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FOREWORD 

This report is one of several in a program to determine the feasibility of de- 

veloping an imaging sensor which uses the spectral characteristics of a scene point 

to identify materials of interest or to enhance the contrast of selected objects. 

Multispectral imagery and video data are being generated over scenes of interest 

from an airborne platform. Multiband images a re  analyzed and interpreted using 

conventional photo-interpretation techniques, and the spectral characteristics of 

targets and background objects a re  analyzed to determine how to electronically 

process the spectral information from a scene in real time for improved remote 

sensing. The general goal of this program is to develop methods of improving and 

extending current aerial-survey capabilities; improvements are sought in the kinds 

and quantity of data obtainable and in the quality and economy of imagery interpre- 

tation. 

This multispectral program was  initiated and is being guided by Marvin R . 
Holter, Head of the Infrared and Optical Sensor Laboratory of Willow Run Labora- 

tories, a unit of The University of Michigan's Institute of Science and Technology. 

Previous reports issued by the Infrared and Optical Sensor Laboratory under this 

and related programs are given in the list of related reports which immediately 

follows . 
This report was prepared by the Willow Run Laboratories under Amendment 

No. 3 of NASA Grant NsG 715/23-05-071, "The Investigation of a Method for Remote 

Detection and Analysis of Life on a Planet." The Principal Investigator for the re- 

search is D. s. Lowe, Head of the Sensory Systems Group of the Infrared and Optical 

Sensor Laboratory. Contributions to this report were made by 

F. Polcyn, Project Leader 

P. Hasell, Sensory Instrumentation and Data Acquisition 

L. Larsen, Calibration Procedures 

E. Work, 12-Channel Spectrometer Fabrication 

R .  Marshall, Electronic Signal- Processing Schemes for Spectrum Matching 

W. Malila, Analysis of Data for Angle Effects 

J. Braithwaite, Altitude Studies 
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The following personnel also contributed to work on the project during this period: 

R. Horvath, T. Pierce, L. Miller,  J. Beard, M. Salata, J. Boyse, N. Spansail, J. Drake, 

F. Thomson, P. Lowry, J. Lennington, L. Mumford, J. Ladd, R .  Jenks, and H. Spring. 

This volume makes reference to a supplement containing classified imagery 

which appears as a separate volume and is available to those holding the required 

security clearances and need to know. 
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ABSTRACT 

A spectrum-matching imaging system for agricultural survey purposes is being 

evaluated. A 12-channel spectrometer for the visible region was combined with an 

optical-mechanical scanner to obtain calibrated simultaneous multispectral data in 

the same electronic format so  that real-time automatic recognition processes might 

be used. Multispectral data in 18 channels from the 0.3- to 15-p region have been 

obtained with a combination of two scanners mounted in a C-47 aircraft. The re- 

search data a re  tape recorded to facilitate the development of spectrum-matching 

schemes and to permit subsequent extraction of the signatures of vegetation types 

of interest. Analysis of data collected in 1964 over agricultural sites has shown 

the non-Lambertian reflection characteristics of different crop species and the im- 

portance of the scanner calibration techniques for current data-acquisition programs. 

Statistical variations of crop signatures and the effects of reflectance geometry and 

instrumental parameters on the reliability of a spectrum-matching system are being 

investigated. 
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INVESTIGATION OF SPECTRUM-MATCHING SENSING IN AGRICULTURE 
Semiannual Report 

1 December 1965 Through 30 September 1966 
Volume I 

1 
INTRODUCTION 

1.1. STATUS OF WORK PRIOR TO THIS REPORTING PERIOD 

Under the initial NASA grant f o r  this work, The University of Michigan and Purdue Uni- 

versity began investigations to determine whether there existed spectral differences in the re-  

flectance and emittance of cultivated vegetation which would permit discrimination and identifi- 

cation of different species of vegetation cover. Currently, The University of Michigan is 

concentrating on the development of airborne spectrum- matching imaging systems with their 

associated electronic subsystems used in spectral signature extraction, the development of 

spectrum-matching techniques, and analysis of the relation of such systems to the geometry 

of the sensing operation. Purdue University is concentrating on obtaining ground-truth data, 

obtaining and analyzing ground spectra, and forming agricultural interpretations. 

The technique of multispectral sensing to enhance contrast and permit real- time decision 

making with the data-acquisition sensor is expected to be beneficial in many areas of remote 

sensing, particularly in the remote detection and analysis of life on other planets and in per- 

mitting agricultural economists to obtain timely information on crop species, maturity, vigor 

and, possibly, yield, thereby helping to improve management of food resources. The spectral 

region used with this technique covers from 0.32 to 14 1-1. Optical-mechanical scanners con- 

stitute the primary airborne data- acquisition sensors. Whenever possible, aerial  photographic 

coverage is obtained with black and white panchromatic, black and white infrared aerographic, 

color ektachrome, and infrared ektachrome film. The photographic data are obtained at the 

same time and in the same aircraft a s  the multispectral data and are used for reference and 

"ground truth" purposes. Spectrometers and meteorological ground instrumentation are also 

used to support the investigations. 

Between 1 June 1964 and 1 October 1964, five missions were flown at the Purdue Agronomy 

Farm, and airborne scanner imagery in four spectral regions, along with extensive ground-truth 

data, was collected. Both day and night flights were made. Some of the data were processed for 

computer analysis, but, as originally anticipated, further funding was needed to complete the 

analysis. References 1, 2, and 3 provide a description of the results obtained from the 1964 

work. 
1 



An amendment to the original grant provided an extension of time and funds for a study of 

how variations in altitude affect the multispectral signature of vegetation as determined from 

low-altitude data. Even if agricultural crops have a characteristic and useful spectral signa- 

ture, their classification or identification from a spaceborne platform would be possible only 

if attenuation, scattering, and emission by the intervening atmosphere does not alter the signa- 

ture in an unpredictable manner. Therefore, experiments were designed to determine how a 

spectral signature in the 0.3- to 14-p region is affected by variations in altitude from 1000 f t  

to 15,000 ft. This limitation in altitude was set by the available instrumented aircraft. The 

flights for this investigation were delayed until the present grant period was funded, which was 
not until March 1966. Fortunately, during this delay a more complete multispectral sensor 

capability was established under another program at Willow Run Laboratories* and is now 

available for this program. 

1.2. DEVELOPMENT OF THE SPECTRUM-MATCHING TECHNIQUE 

The primary goal of efforts under the current amendment to the original grant is the de- 

velopment of an optimum technique for automatic recognition using calibrated multispectral 

sensors. To attain this objective, a new type of sensor, which we call the spectrum-matching 

imaging system (SMIS), has to be developed. Basically, this sensor collects energy from each 

resolution element of a scene simultaneously in many spectral bands. A decision is made, 

using pattern recognition techniques, on whether or not the spectral radiance of each scene 

point belongs to a set of radiances known to exist for a particular terrestrial  feature at the time 

of overflight. The tones in the resulting graphic presentation can then be made to  represent 

how well the spectral radiance or  brightness of a given scene point corresponds to a reference 

or a known spectral radiance. A graphic presentation permits the data user to interpret the 

resulting image or pattern, but, in some applications, it is envisioned that the output can be 

numerical, e.g., the acreage planted in wheat or the percentage of vegetative ground cover. 

This represents a radically new sensing concept, since all current sensors (cameras, radars ,  

electro-optical sensors, infrared sensors) observe and display the magnitude of the differences 

in radiance from each scene point in a given spectral interval. SMIS observes the spectral 

properties of each scene point, makes a decision as to whether these properties correspond to 

those being sought, and then graphically displays the results of this decision. 

Optical- mechanical scanners are widely used to  generate imagery in spectral regions 

where photographic or photoemissive detectors are not responsive. In most instances, these 

scanners use the sensitive area of a detector element as the scanning aperture. The operating 

principles of airborne optical-mechanical scanners have been discussed by Holter and Wolfe [4]. 

*Under Project MICHIGAN, Contract DA-28-043 AMC- 00013(E). 
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When mounted in an aircraft or spacecraft, such systems contain a scanning mirror which 

sweeps the scanning aperture (instantaneous field of view) in lines perpendicular to the flight 

path, and the forward motion of the vehicle provides the advance of scan lines. With suitable 

processing and printing the resulting image is a strip map of the scene below, which is not un- 

like a television picture with an endless frame. Since the signals from the detectors in an op- 

tical-mechanical scanner are electrical, they are amenable to electronic processing in real 

time prior to display or the generation of imagery. 

While most scanners use the detector (or a field stop in front of o r  imaged on the detector) 

to define the field of view, the entrance slit of a multichannel spectrometer can be used as the 

field stop, as shown schematically in figure 1. In such a system, each detector of the spec- 

trometer observes the same resolution element of the scene, but in a different wavelength 

region. The output signal from each detector element is a video signal corresponding to the 

scene brightness in the particular wavelength region of the detector's operation. This video 

signal can be used to generate an image of the scene in the wavelength region defined by the 

position of the detector in the spectrometer. The output signals from multiple detectors can 

be combined to determine the spectral distribution of the radiation from each scene point, and 

this spectral information can then be used selectively to enhance or suppress the brightness 

of objects or materials in a scene on the basis of their spectral radiance. Thus, the multi- 

channel video data can be fed to a signal processor designed to generate a single video signal 

the intensity of which, for example, might be proportional to the probability that the spectrum 

measured indicates the object or material being sought. 

The possibility of material selection on the basis of the spectral distribution of its radiation 

is quite reasonable. Numerous investigators have made or are making spectral measurements 

of natural features in situ to optimize single-band imagery, but only a few a r e  attempting to de- 

termine the feasibility of recognizing landscape features on the basis of their spectral reflec- 

tance [5-111. These measurements a re  largely confined to the photographic region or are being 

made by nonimaging sensors. Only in recent programs has the idea of combining spectral and 

spatial information been considered [9, 111. An optical-mechanical scanner is not limited to 

the photographic region and can operate in many bands between 0.33 and 13.5 p, where reflected 

solar radiation and thermal emission predominate. The discrimination potential of a multi- 

spectral scanner is enormous. Assume for the moment that an object's tone can be determined 

to within one of ten gray levels in any given spectral interval. A multispectral scanner operating 

in 20 wavelength bands would be capable of distinguishing up to lo2' different states. Admittedly, 

this number of states does not exist: large spectral variations in reflectance and emittance do 

not occur over narrow spectral intervals in a random manner; variances can occur in a given 

class of objects; most materials exist as mixtures; and the spectral distribution of the scene 

3 
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illuminance varies. Nonetheless, it is obvious that simultaneous observation in many wave- 

length bands permits one to distinguish between considerably more objects than does single- 

band operation. The number of channels of operation is a function of the detector signal-to- 

noise ratio and optical design configuration. Under normal illuminating conditions and ambient 

temperatures, the spectral interval of 0.33 to 13.5 p can be split into more than 30 bands, each 

giving usable SNR. (The Infrared and Optical Sensor Laboratory has completed a design study 

for such a new sensor operating with up to 29 channels [12] .) 

The system designed in the above-mentioned study permits collection of data in both the 

visible and infrared regions from the same resolution element at the same time. This system 

would obviously be preferred in conducting the next step in the research into spectrum-matching 

techniques. The system available for use under this grant has been developed under Project 

MICHIGAN and is useful in laying the groundwork. This system is further described in section 

3. A 12-channel spectrometer has been built which replaces a cooled, single-element detector 

in an airborne scanner. The 1 2  channels collect energy in the region between 0.4 and 1.0 p 

from the same resolution element at the same time. The detailed description of this unit isgiven 

in section 3.1. Other data in the ultraviolet and infrared regions a re  collected at nearly the 

same time to give 18 channels of information between 0.32 and 15  p.  In order to effectively 

use the data from any of these multispectral sensors for obtaining spectral signatures, there 

must be channel-to-channel calibration. We have stated earlier that conventional sensors re- 

cord only the variations in the radiation received over a scene. The new SMIS technique requires 

a knowledge of the actual radiation levels in each channel from each resolution element. Cali- 

bration of radiation levels for each scan line is provided by reference lamps that produce a 

voltage pedestal when they are scanned by the same optics that scan the terrain. By obtaining 

a signal that contains operator gain settings information (a black reference produces zero volt- 

age while the standard lamp voltage is proportional to gain) as well as signal power calibration, 

the scanner output can be monitored for stability and a spectral brightness curve can be derived. 

The details of the calibration scheme's implementation in the system used in 1966 data-acquis- 

ition program is given in section 4. 

The derived spectral-brightness curve is the spectrum that is to be matched to the spec- 

trum of the object being surveyed. These spectra are proportional to the spectral energy emit- 

ted or reflected by the source under observation and carry the information such as the species 

of vegetation, level of maturity, and whether or not diseased sections are developing. Continuing 

studies are needed to establish the signatures of the many objects of interest and to study the 

influence of such factors as angle of view, sky condition, altitudes, row direction, soil type, and 

moisture on the uniqueness of the spectrum. The SMIS can be used to obtain the data needed to 

analyze the spectrum taken in real situations. For meeting the purposes of the research in 1966, 
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the outputs of the 12-channel spectrometer as well as the six spectral bands distributed in the 

ultraviolet and infrared regions are tape recorded. The tapes are then replayed, new digitized 

tapes are made, or the data are displayed on multichannel chart recorders to facilitate analysis. 

The electronic processing used to obtain signatures and to perform the spectrum-matching func- 

tion is described in section 5. Some of the pictorial results obtained from initial experiments 

a re  shown in a classified supplement to this report. 

The spectral data collected in 1964 and 1966 are being analyzed for the effects of angle of 

view, altitude, and instrumental effects. The results of the analysis to date are presented in 

section 6, where it is shown how the response from crops can vary as a function of different 

angles of view and with different row orientations. Section 6.4 describes how the 1966 data 
will be processed to determine altitude effects on the spectral signatures. As planned, the level 

of funding for the third amendment to the grant does not permit analysis of the 1966 data; this 

must be performed under follow-on contracts. The program for data collection under the 1966 

contract is described in section 2. 
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2 
DATA-ACQUISITION PROGRAM FOR 1966 

To meet the objectives in the development of the spectrum-matching imaging system for 

agricultural uses,  a series of controlled data-acquisition missions over a known agricultural 

site was needed to collect data to be used for studies of signatures a t  different states of ma- 

turity, as well as variances of spectra for crop species and varieties and the investigation of 

altitude effects on signatures. It was also desired to collect data over an extended flight path 

of a few miles so  that tests of electronic spectral-matching techniques could be made later in 

a simulated operational sense. 

The data collected will help answer many specific questions requiring research: How many 

wavelength channels of information a re  required for reliable identification? What wavelength 

resolution is adequate? What is an acceptable signal-to-noise ratio for a useful detection prob- 

ability? What maximum ground resolution can be tolerated? What time of day is preferred 

for sensing? How do sky condition, soil moisture, and soil type influence spectral signatures? 

Does the spectral intensity from a particular field observed at angle 8 differ enough from 

another field observed at angle e2 to permit automatic recognition? What is the acceptable 

range for the angle of view of the receiver? What are the overall statistical variations on sig- 

natures? How should the spectrum matching be made? 

1 

The data-collection tests and their analysis form the main s t ream of a verification pro- 

cedure whereby all inputs, such as spectral wavelength, sun angle (time of day), view angle, 

crop types and conditions, etc., are weighed to determine the major factors in successful iden- 

tification from an airborne or spaceborne platform. It is expected that the research will identify 

the conditions and situations that lend themselves to space sensings in comparison to conditions 

under which ground equipment or airborne sensors can be used more profitably. 

2.1. SITE SELECTION 

The total agricultural experiment consists of airborne tests, ground-truth measurements 

and checks, ground calibration checks, data processing and analysis, and interpretation of re- 

sults. To keep the data processing and handling less complex and permit easier interpretations, 

simple data-acquisition operations were planned. Fields were chosen in which the vegetation 

types of interest were arranged in a linear array so that a single aircraft pass covers the com- 

plete set of fields. The fields selected were large enough that, by either electronic sampling 
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or  densitometry, an accurate estimate of the corresponding intensity in each spectral band can 

be made at any of the altitudes flown. 

The number of crops sensed and the condition of the crops were selected on a priority 

basis. Such factors as the economic importance of the crop, the mean size of the fields, the 

effect of different types of soil, and the crop's maturation rate bear on whether the operational 

sensing will ultimately be done from orbital altitudes or from conventional aircraft altitudes. 

The above factors were considered in the choice of the several flight lines at Lafayette, 

Indiana, and the locally flown passes in Michigan. Since only three 1-week missions to Lafayette 

were budgeted, flights were made in June, July, and September to sample the maturation states 

of wheat, corn, soybeans, and some of the less important crops. 

2.2. DATA-ACQUISITION OPERATIONS 

The three 1-week missions flown at Lafayette were organized to provide the following 

types of data for analysis (see table I): 

(1) Altitude-variation data. A series of flights over a 3-mi path was made at increments 

of 2000 f t  up to 10,000 f t .  

(2) Source-angle and view-angle data. Morning and noon sun angles were chosen and a 

flight at an altitude of 700 f t  was made so that the radiation from the selected fields could be 

sensed over most of the receiver's total scan angle. The morning sun provided forward scatter- 

ed and backscattered light for flight lines oriented north and south. The noon sun provided left- 

and right-scattered light for the same flight orientation in addition to a different source eleva- 

tion angle. 

(3) Crop-signature data and simulated operational data for future analysis. Several passes 

were made at altitudes of 3500 f t  and 2000 f t  over the Agronomy Farm and over areas southwest 

of Lafayette to gather statistical data on different crops for signature analysis. Three relatively 

long flight lines at 10,000 f t  provided wide-area coverage for general ground-truth orientation, 

and at least one of the flight lines provided data to test spectrum-matching technique develop- 

ment. 

(4) Livestock data. Data-collection flights were made both day and night for comparison 

of livestock detection probabilities. 

(5) Soil-moisture stress data. Data collected at the Sand Farms area north of Lafayette 

will be analyzed mainly by personnel at Purdue University. 

*-. , 
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3 
NEW EQUIPMENT CONFIGURATION FOR 1966 

The data-collection equipment available to the contract to accomplish the planned measure- 

ment program was not completely suited to the task without modification. Fortunately, the 

available equipment, developed under the Project MICHIGAN, was being modified to increase 

the scope of a Project MICHIGAN data-collection program in a manner quite similar to re- 

quirements of this project. Therefore, some of the required modifications to the data-collection 

system were developed under the army-funded contract while others were developed under this 

grant. The new capabilities include: (1) a 12-channel spectrometer configured to replace a 
detector in The University of Michigan modified AN/AAS- 5 airborne scanner, (2) conversion of 

one of two 7-channel magnetic-tape recorders into a 14-channel machine, (3) purchase of new 

detectors and filters with better performance characteristics, (4) the reconfiguration of the 

C-47 instrumentation aircraft to incorporate 11 new scanner data channels, one new operator 

position with controls and displays, and radiometric calibration provisions for all 18 scanner 

data channels, and (5) the development of ground-based data-handling equipment to sample and 

serialize up to 1 2  data channels simultaneously. 

3.1. 12-CHANNEL SPECTROMETER 

Probably the most important new equipment development during this reporting period has 

been the spectrometer detector unit. This unit provides simultaneous multispectral informa- 

tion in the visible and near-infrared regions using off-the-shelf components. 

A problem inherent in the design of a spatial scanner with a spectrometer detector system 

is illustrated by the system shown in figure 2. The single detector of a conventional spectrom- 

eter observes one spectral resolution element at any one time, and the system scans in time 

through the spectral region of interest. However, terrestrial scanners of the kind in which we 

are interested scan across one ground resolution element in times which are short compared 

with the scan time for the fastest scanning spectrometers. Therefore, the system must be de- 

signed to detect many spectral bands simultaneously and must use multiple detectors. The si- 

multaneous spectral observation by an array of detectors imposes several severe requirements 

on the spectrometer optics. The same spectral dispersing element (the prism in fig. 2) must 

be capable of operating over the entire spectral range of interest, and its spectral dispersion 

should be reasonably matched to the spectral resolution desired in the region of interest. Fin- 

ally, the optics selected for the spectrometer must be matched to the optics of the scanner and 

must handle the radiation without undue attenuation losses. 
10 
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Because spectral information in the region 0.4 to 1.0 p would prove useful and because 

optical components for operation in this wavelength region were readily available as off-the- 

shelf items, it was decided to first develop a simple spectrometer for this region of the spec- 

trum. Rapid completion and earlier collection of data were thus to be realized. In addition, a 
foundation of experience would be laid for expansion of similar techniques into the ultraviolet 

region and further into the infrared. 

The design concept has been to produce a spectrometer which is readily interchangeable 

with any of the conventional single-element detectors usually associated with an airborne 

scanner. Its configuration is shown in figure 3. The detector is a prism-type spectrometer 

with its entrance slit located at the focal point of the scanner collecting optics (where the de- 

tector flake of a single-element detector would normally be located). The lenses and prism 

shown are all conventional components readily available from camera or  spectrometer manu- 

facturers. The spectrally separated radiation output of the spectrometer is picked up by an 

array of 16 fiber-optic bundles which distribute the energy to 12  photomultiplier detectors lo- 

cated in a ring around the top of the assembly. One to four fiber bundles can be grouped at each 

photomultiplier to establish the wavelength resolution of each channel. Thus, at any instant of 

scan, the identical ground resolution element is registered in 12  bands in the wavelength region 

of the photomultiplier response, 0.4 to 1.0 p.  

The instrument allows for latitude and versatility in selection of several channels. Already 

mentioned is the possibility of grouping any combination of fiber bundles. The whole fiber array 

may be positioned or shifted to any desired point along the dispersive spectrum by use of the 

focal-plane adjust screw illustrated in figure 3. Finally, the fiber-optic array and entrance 

slit may be completely replaced by any number of customized configurations for obtaining dif- 

ferent resolutions or any desired optical bandpass within signal-to-noise limitations. To allow 

for flexibility in choosing wavelength assignments , interchangeable photomultipliers with either 

5-20 or S-1 sensitive photocathodes a r e  used in the detector array.  Two views of the spectrom- 

eter detector are shown in figure 4. Figure 5 shows the fiber-optic assembly prior to its in- 

corporation into the system. 

The 12-channel spectrometer detector has now been operated continuously on a relatively 

busy flying schedule since April 1966. Strip-map quality from the system has been at least as 
good as has ever been achieved with any of the former single-element infrared detectors. Of 
equal significance is the fact that it has never experienced an operational breakdown, not even 

a single failure of a photomultiplier tube. 
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(a) Overall View (b) With Cover Removed 

FIGURE 4. SPECTROMETER-DETECTOR ASSEMBLY 

FIGURE 5. FIBER OPTICS OF SPECTROMETER-DETECTOR ASSEMBLY 
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3.2. CONVERSION OF TAPE RECORDER 

The two 7-channel Ampex 1300 magnetic-tape recorders which were part of the original 

data-collection equipment assembled in 1964 lacked the capability of recording 1 2  simultaneous 

data channels on a single tape. Therefore, one of the two recorders was converted by Ampex 

field personnel to a 14-channel machine. The conversion was routine and involved replacing 

the recording head and adding the required electronic signal-handling units. An edge track for 

a voice channel was also added, 

The 18 video channels from the two double-ended airborne scanners are recorded on tape 

in the data format given in table 11. Opposite ends of each scanner are referred to as A and B 

ends. The data format places the sync in the center of each tape to minimize time displace- 

ment effects of tape skew. Odd- or even-numbered tape channels are grouped on the same tape 

head. Thus, to minimize channel-to-channel time displacement caused by tape flutter and 

stretch, the outputs of the four-element detector (B end of scanner no. 1) are  placed on the same 

head. 

3.3. NEW DETECTORS 

Aside from the 12-channel spectrometer, no new detectors were developed for the airborne 

scanner. However, the configuration of the four-element InSb detectors was modified to incor- 

porate more rugged mounting to improve reliability and more accurate wavelength filters to 

improve the data quality. Even with these improvements, the four-element detectors have not 

been reliable in operation and there is evidence of radiation leakage onto the detector elements 

from around the bandpass filters. The evaluation and investigation of replacements for this 

detector are continuing. 

A Ge:Hg long-wavelength detector assembly, complete with helium dewar, was purchased 

as an operational spare to the one already in use. These detectors have performed well. 

An evaluation of photomultiplier tubes which could be used in the spectrometer resulted in 

a selection of RCA types. Type 8645 with an S-20 cathode is used in the spectrometer channels 

between 0.40- and 0.72-l~. wavelength, and type C70042CPl with an S-1 cathode is used for wave- 

lengths between 0.72 and 1 .OO p. These detectors provide optimum signal-to-noise character- 

istics under the operating conditions of this application. An Amperex 150 UVP with an 5-13 

cathode response is used for the photomultiplier detector in the 0.32- to 0.38-p wavelength 

region. 

3.4. C-47 INSTALLATION 

The instrumentation configuration in the C-47 aircraft was modified to incorporate another 

operator position associated with the proper recording of the 12-channel spectrometer output. 
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TABLE II. DATA FORMAT 

Mag.- Tape 
Channel No. 

1 
2 .  
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

Scanner No. 1 
on 1/2-in. Tape 

B: 1.5 to 1.8 p 
Illumination level 
B: 2.0 to 2.6 p 
Sync No. 1 
B: 3.0 to 4.1 p 
A: 8.0 to 14.0 p 
B: 4.5 to 5.5 p 

Scanner No. 2 
on 1-in. Tape 

B: 0.32 to 0.38 p 
A: 0.40 to 0.44 p 
A: 0.44 to 0.46 p 
A: 0.46 to 0.48 p 
A: 0.48 to 0.50 p 
A: 0.50 to 0.52 p 
A: 0.52 to 0.55 p 
Sync No. 2 
A: 0.55 to 0.58 p 
A: 0.58 to 0.62 p 
A: 0.62 to 0.66 p 
A: 0.66 to 0.72 p 
A: 0.72 to 0.80 p 
A: 0.80 to 1.00 p 

Radiometric calibration signals were introduced into all video data channels. Small-area, 

high-intensity radiation references were viewed in the reflective channels, and extended black- 

body plates which filled the collection aperture were observed in the thermal channels. The 

dark illumination level and thermal radiation of the interior of the scanners were also regis- 

tered in the video signals (see sec. 4). 

The aircraft equipment configuration requires an instrumentation operating crew of three 

technicians and two engineers. One technician operates the four aerial cameras and the con- 

sole used for photorecording two scanner channels directly on film during the flight. A second 

technician operates the 6-channel console and the 1/2-in.-tape recorder. The third technician 

operates the 12-channel console and the 1-in.-tape recorder. One engineer monitors the oper- 

ation of the preset calibration references and notes all non-tape-recorded data. The second 

engineer directs the instrumentation and aircraft flight crews. 
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4 
CALIBRATION OF DATA-ACQUISITION EQUIPMENT 

The scanner output signals are a direct function of the viewed radiation. The scanner pro- 

vides a voltage output for each resolution-element area on the ground which is proportional to 

the radiation received from each area,  but the proportionality factor and the bias level (voltage 

output for zero radiation) are not known to the required accuracy. One way to improve this ac- 

curacy is to provide a constant reference radiation into the scanner which can be compared 

with the ground radiation. The constant reference radiance must then be either known (as in 

the present system for the 0.32- to 4.1-p region) or compared with a known radiance from the 

ground. Ground panels of known reflectance are used as reference sources. 

Two blackbody plates of known temperature are used as radiant reference sources for the 

4.5- to 15-p bands. The radiances of these reference sources are measured by the scanner 

and the apparent radiances of the ground sources are compared with these as necessary. The 

calibration sources must give a spectral radiance in each spectral band which is near that from 

the ground. Since no one source is available with the spectral distribution of the sunlit earth 

over the wide spectral interval from 0.3 to 14 p ,  several sources of different temperatures 

and areas a re  used. 

4.1. REFLECTION CHANNEL CALIBRATION 

The dominant radiant energy from the scene in the 0.3- to 4.1-1.1 band is reflected sunlight. 

The source spectral characteristics therefore should match those of the sun. The sun's spec- 

tral energy as viewed through the atmosphere is approximately a 5800°K graybody with some 

attenuation in the 0.4- to 0.5-p region and more in the 0.3- to 0.4-p region. Two quartz-iodine 

lamps are used as sources in the 0.3- to 1.0-p band, which is the spectral region covered by 

one of the multispectral scanners. The two lamps have similar spectral radiance, but one is 

adjusted to be several times brighter than the other. The brighter lamp is the reference in the 

0.3- to 0.6-p part of the band, and the dimmer lamp is used for 0.6- to 1-p channels. The dark 

interior of the scanner serves a s  the dark-level (zero-radiation) reference for each of the scan- 

ner data channels in the spectral band 0.3 to 1.0 p. 

Another multispectral scanner is used to provide the signals in the 1.5- to 14-p band. 

Again a quartz-iodine lamp is used as a reference source for the detectors operating in the 

1.5- to 4.1-p spectral band. Since the thermal radiation from the area surrounding the lamp 

cannot be considered negligible in this band, the lamp is surrounded by an extended blackened 
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plate whose temperature is controllable and uniform. The radiance from the lamps is con- 

trolled by controlling the voltage from a regulated power supply. 

Figure 6 shows the approximate spectral irradiance of the detector by sunlit earth and 

from the two quartz-iodine lamps, 45 W and 100 W, in the 0.3- to 1.0-p region. A 45-W lamp 

is also used in the 1.5- to 4.1-p band, but the lamp is normally operated at a lower current in 

this region. Figures 7a and 7b show the measured scanner output in each of the spectral bands 

given in table III. 

The relative spectral radiation from the quartz-iodine bulb is shown in figure 8. Typical 

calibration pulses from both bulbs in the 0.3- to 1.0-p band as a function of time are shown in 

figure 9. The central 250 psec of the pulse is considered the calibration level. Data showing 

calibration signal levels in comparison with ground signals are shown in figure 10. 

4.2. THERMAL CHANNEL CALIBRATION 

The plate that provides a known background for the 1.5- to 4.1-p band lamp and another 

plate, both with high emissivities and controllable temperatures, are used as reference radi- 

ation sources for the 4.5- to 14.0-p band. Each of these plates is controlled to a fixed temper- 

ature which will result in a radiance comparable to the lowest and the highest ground radiances 

bracketing the targets of interest. Each plate is covered with a polyethylene window to reduce 

convective losses. The plates are grooved and painted dull black to reduce reflections. A uni- 

form temperature is maintained by using a thick layer of copper for the plate. Heat is con- 

ducted to or away from the copper plate by thermoelectric modules coupled to a water-cooled 

heat sink. The water is cooled by a radiator in the air stream. The temperature of the plate 

is maintained constant by a closed-loop servo system using a thermistor sensor. The heating 

or cooling rate is about 0.2'C/sec. Measurements on the plate show the temperature to be 

uniform to 0.loC over the surface of the plate and controllable to *O.l°C over the range of O°C 

to 6OoC with an ambient temperature change of 5OC if (1) the temperature control is set for a 
higher temperature than the water and the mode switch is at heating or (2) the temperature 

control is set for a lower temperature than the water and the mode switch is at cooling. Two 

problems exist at the present time: 

(1) If the desired plate temperature is near ambient, the operator doesn't know when to 
switch the mode switch to heat or cool. This is expected to be corrected soon with 

automatic mode switching. 

(2) If the plate is below the dew-point temperature, either water or frost forms on the 
plate surface, causing an e r ror  in the expected radiation from the plate. 
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TABLE 111. SPECTRAL BANDWIDTHS FOR 12-CHANNEL SPECTROMETER 

Channel 

uv 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Fiber 
No. 
7 

L 

14,15,16 
12,13 

11 
10 
9 
8 
7 
6 
5 
4 
3 

1, 2 

Spectral Bands 
up to 15 April, 1966 

0.32 to 0.38 
0.390 to 0.420 
0.420 to 0.442 
0.442 to 0.455 
0.455 to 0.470 
0.470 to 0.480 
0.488 to 0.509 
0.509 to 0.532 
0.532 to 0.559 
0.559 to 0.594 
0.594 to 0.630 
0.630 to 0.682 
0.682 to 0.810 

(P I  

Spectral Bands 
After 15 April 1966 

( P )  

0.32 to 0.38 
0.404 to 0.437 
0.437 to 0.464 
0.464 to 0.482 
0.482 to 0.502 
0.502 to 0.524 
0.524 to 0.549 
0.549 to 0.580 
0.580 to 0.617 
0.617 to 0.659 
0.659 to 0.719 
0.719 to 0.799 
0.799 to 1.000 
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Thermistors calibrated to f 0.05OC every l l°C by Fenwal are used for temperature moni- 

toring in conjunction with a bridge circuit. Absolute accuracy has not been determined, but 

should be close to the thermistor limitation. 

4.3. GROUND PANELS AS REFLECTANCE STANDARDS 

The use of the internal calibration lamps provides a stable reference for monitoring the 

sensor detectivity as well as permitting any gain o r  dc bias adjustments to be automatically 

stored in the video signal since both a zero level and calibration signal a r e  recorded. When 

the lamps are calibrated for power output, an instrument transfer function can be prepared. 

By using a set  of ground panels of known percent reflectance, a way of converting the video 

signal to percent reflectance is obtained. A detailed analysis into the conditions for which this 

conversion is accurate is given in appendix I. The reflectance of the five-step gray panels used 

varies with wavelength as shown in figure l l a .  Nominally, the wavelength percent reflectances 

for the panels a r e  defined as 4, 8, 16, 32, 64; but as can be seen from the figures for a channel 

between 0.617 and 0.659 p ,  the gray scales have values of 4.3, 6.7, 13.5, 27.1, and 58.6. Fig- 

ures l l b  and l l c  show the percent reflection of the three-step set of black and white panels 

and of the red,  green, and blue panels also used for calibration in 1966. 

The motivation for conversion to percent reflectance can be seen from considerations of 

the sunlight variations on the fields during an overflight. Basically, one can consider spectral 

signatures of any object to be either the percent-reflectance curve or simply voltage vs. wave- 

length information existing in electrical signals from the object. When the clouds obscure the 

sun, the voltage, being proportional to power reflected from the object,is reduced and a multi- 

spectral signal processor may or may not be able to identify the sample. If the processor 

makes the decision on the basis of percent reflectance, then one might argue that this param- 

eter is less susceptible to sunlight changes and a correct recognition may be made. The practi- 

cal difficulty lies in the implementation of the conversion to percent reflection ivithout intro- 

ducing a significant e r ro r  in the process. A standard on the ground is usable primarily on 

clear days since a sample taken at one location can be stored and used as a reference a t  later 

points in a flight line. For the present, the ground panels will be used to check system per- 

formance, to provide a standard object for both ground and airborne spectral measurements, 

and to aid in comparing spectral signatures on the basis of reflectance during the analysis phase. 

Essentially, they will be used to determine whether one must use reflectance rather than radi- 

ance for spectrum-matching decisions. 

The total set of panels used during the 1966 missions consisted of a photographic-resolution 

bar chart, a set of three-color panels (red, green, and blue), and both a three-step gray scale 

and a five-step gray scale. The size of the color and gray-scale panels were generally 20 X 40 f t  
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for each level. Figure 1 2  shows the layout during the July mission at the Agronomy Farm near 

Lafayette. The panels were furnished and displayed under contract with Data Corporation, 

Dayton, Ohio. 

4.4. PROGRAM FOR USE OF THE CALIBRATION PROCESS 

Calibration sources are being used in the data-collection program so  that spectral radi- 

ance can be measured on an absolute scale. This will help in determining the reflectivity of 

types of vegetation. In this way, such data may then be employed to recognize and map objects 

using standard spectral signatures developed from earlier measurements. In the past, it has 

not been possible to determine spectral signatures which could be used with data obtained on 

different flights. Only ordering of the reflectances for objects or crops was possible for data 

obtained at different times and in different places. 

As shown earlier, the present program includes two basic calibration sources, ground- 

placed panels of known reflectivity and airborne thermal and luminous sources seen by the 

scanners during each revolution of the scan mirror .  The calibration data from these sources 

are obtained in different ways. The panels located on the ground are seen by the airborne 

scanners for only a brief time, and it is therefore difficult to locate and to measure the signals 

corresponding to these sources directly (i.e., electrically). The use of cyclical scanning of the 

primary data tapes would allow such a measurement, but the necessary equipment is not avail- 

able at present. Lacking such equipment, we have planned a less direct technique using photo- 

graphic film as a transfer medium. An electrical 

inserted at  the beginning and end of the s t r ip  maps 

bration sources in the scanner will be recorded on the same film along the edge of the strip 

maps. The electrical signals may then be recovered by a densitometric measurement in which 

the film is required to function only a s  a medium for comparison. As a result, no particular 

care  is required to calibrate the film; the only requirement is that the gray scales of interest 

be distinguishable. 

p wedge signal of 11 gray scales will be 

eated from the tapes. The internal cali- 

In this manner the voltage equivalence of a scene point, the ground panels, and the internal 

calibration sources may be determined and the radiance or  reflectance may be calculated for 

any scene point. Once the equivalence of the internal calibration sources to external standard 

reflectance panels has been determined, the reflectance of ground points for other areas may 

also be determined, provided the solar radiation is constant. If solar radiation varies because 

of clouding or  haze, reflectivity cannot be determined unless the solar radiation can be mea- 

sured under the various conditions encountered. 
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FIGURE 12. AERIAL PHOTOGRAPH SHOWING CALIBRATION PANEL DISPLAY AT PURDUE 
AGRONOMY FARM 
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Calibrated information will be generated for analytical work in three basic forms: film, 

serial analog video, and digital tape. The data will be of the same form in each case, that is ,  

the relative locations of data in each record will be preserved. 

In the case of film strip maps, each channel of data will be printed as a normal single- 

channel strip map, except that the calibration sources sampled during each scanner revolution 

will be relocated in time to appear at the edges of the strip map to form two bands of gray 

alongside the usual imagery. In addition, gray-scale step wedges generated from appropriate 

voltage waveforms will be inserted at the beginning and end of each film strip. This form of 

the data allows quantitative analysis by conventional densitometry and is preferred for some 

analyses. 

In the second case, the data are first rearranged in the form of a sequentially presented 

(serialized) version of the 12-channel parallel data. These data can then be played back, dig- 

itized, and recorded in serial digitized form. A code is supplied to the tape channels to des- 

ignate the kind of data present: signature, calibration, or zero reference. With these data, 

the radiance of the calibration sources may be read with the processing equipment. The var- 

iability of the instrumentation may be monitored from these data, also, since the calibration 

source is available during each scanner rotation and drift and gain variations may be determined. 

More importantly, the statistical analysis of the data corresponding to particular classes 

of objects, e.g., corn or  wheat fields, can be performed on a digital computer using these dig- 

itized, serialized tapes as a convenient input. The statistics can then be used as classification 

keys for processing future data. 
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5 
SIGNATURE EXTRACTION AND SPECTRUM-MATCHING TECHNIQUES 

5.1. SIGNATURE EXTRACTION 

One of the principal objectives of the program is the extraction of signatures of crops 

from the scanner data. The scanner data, calibration data, and ground-truth information must 

all be accurately obtained and preserved to allow the signatures and their sources of variability 

to be determined. Not only must signatures of crops of interest be determined, but the similar- 

ity of the backgrounds to these crops must be examined to obtain a measure of the uniqueness 

of the signatures. Signature extraction then must consider the complete environment, the in- 

strumental variability, and parameters such as the orientation of the scanner, its "look" angle, 

and the sun angles. 

The primary means of extracting signatures and examining variability will be processing 

of scanner data on a digital computer. The digital computer data will be a tape containing a 

densely sampled version of the original analog tape data and will preserve the scanner look 

angles and roll  information. It will also contain coding to define the data, whether it is the 

spectral radiance of a field of interest, of calibration data, or of useless information. With 

these data the statistics of a representative group of crop fields may be gathered and processed 

directly by computer program. The ground-truth information and calibration information can 

be merged with this tape or entered separately on cards. (A detailed description of this pro- 

cedure is included in appendix II.) Since this record contains data not only from the field of 

interest but from other fields as well, samples of background signatures may be gathered from 

the same data and should allow the generation and testing of realistic covariance functions. 

In addition to the extraction of signatures by digital computer, another means of signature 

extraction is available. The equipment necessary to prepare data for the computer may also 

be used to obtain spectral data about areas of interest. This equipment normally generates a 
sequential scan of the multispectral data in a continually cyclic form. This scan may be con- 

trolled, however, so that data are  obtained only from a selected area. This ser ia l  scan may be 

photographed on an oscilloscope and a signature and the dispersion of the signature may be de- 

termined. Covariance properties of the signature are not retained with this technique, however. 

This approach has been used to determine the signatures of several crops in the Lafayette 

area in order to evaluate the technique a s  a means of obtaining signatures quickly and as an 

independent means of signature extraction to serve as a check on the computer process. 
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Finally, an interesting means of analyzing spectral information in two bands has been used 

fairly extensively. Signals from two spectral channels may be supplied to the xy inputs of an 

oscilloscope and the complete distribution for some chosen scene can then be examined sequen- 

tially. The display may be calibrated and used to obtain signatures, but its principal usefulness 

lies in allowing a quick examination of the covariance of the signals for two selected wavelengths 

for every part of a completed scene. The discriminability of many targets using only two wave - 
lengths can then be assessed by visual examination. This estimate o r  test of target discrimina- 

bility is a useful one since it is pessimistic, i.e., if the desired target can be seen to have a 

distribution which does not overlap other distributions, the target may be discriminated and 

the false-alarm rate should be decreased when more spectral dimensions are employed. 

An example of this form of presentation is given in the supplement to this report. Data 

were obtained on a flight over the ramp area of the Willow Run Airport beginning from an area 

including a lake and rural scene and proceeding north across the eastern edge of the airport. 

Several objects of interest have been identified in these photographs. Their recognition will be 

discussed in section 5.2. 

5.2. SPECTRUM MATCHING 

The objective of the program in spectrum matching is the recognition or enhancement of 

crops of interest or of important characteristics of these crops. Experiments have been con- 

ducted using two approaches so far. One is based on the use of the x-y display mentioned in 

section 5.1 and allows recognition of objects with separable x-y distributions. The other allows 

the simultaneous matching and recognition of 12-element sources by computing the instanta- 

neous vector distance between an unknown signal and a signature and registering a match when 

the distance is within some arbitrary bound. 

The first technique, christened the "x-y light pen," employs an x-y oscilloscope to present 

the two-color spectrum in an orthogonal manner and generates a display as shown in figure 13. 

If a detector is now located on the face of the CRT with an aperture properly sized to match 

the distribution of interest, the detector output will indicate that a target with the proper spec- 

t ra l  coordinates has occurred and that it has occurred at a definite time. If a strip-map image 

is now generated employing the detector signal as the video signal in place of the original video, 

the map will indicate the location and shape of the targets within the aperture. 

This has been done for the scene mentioned earlier (sec. 5.1)) and four recognition strip 

maps have been generated. These are shown in the supplement, indicating the recognition of 

water, gravel-topped asphalt, concrete, and grass,  These data were obtained on 21 March, 

and very little vegetation besides grass  and winter wheat was evident. It was found to be pos- 

sible to map some winter wheat under these conditions with the same spectral channels. 
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Channel B Video Amplitude -.3 
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FIGURE 13. EXAMPLE OF X-y PLOT OF TWO-COLOR SPECTRA 
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Using equipment assembled for the serialization of the taped data, we were able to extract 

signatures readily from areas of interest and to determine the channels of the spectrometer 

which would allow the best discrimination of specific targets. This was done for some data 

obtained in a flight over the western portion of the Purdue Agronomy Farm on 20 July at 0800 

hours. A particular question was raised concerning the possibility of discriminating corn and 

soybeans on that date since film-strip imagery of the spectral bands seemed identical. First 

attempts at recognition using the 0.46- to 0.48-1.1 and 0.66- to 0.72-p bands were not conclusive, 

i.e., some corn and soybeans were confused. Investigation of the spectral signatures indicated 

that differences existed in channels 8 and 9 (0.58 to 0.61 p and 0.61 to 0.65 p) and, to a lesser 

extent, in channels 5, 6, and 7 (0.49 to 0.51 p ,  0.51 to 0.53 p ,  and 0.53 to 0.56 p). Additional 

tests performed as a result indicated that better discrimination of all corn and soybeans in the 

field of view could be found in channels 8 and 10 (0.58 to 0.61 p and 0.66 to 0.72 p).  

Another application of the light-pen technique to data obtained on 28 June at 1200 hours in 

the Lafayette area illustrated both the practicability of using the data for identification and a 

typical difficulty in such simple processing. From data taken along a 2-mi run on that date, 

three different recognition pictures were made using spectrometer channels 3 and 10 (0.46 to 

0.48 p and 0.66 to 0.72 p). In the first recognition picture, an attempt was made to recognize 

pasture lands. A comparison with ground-truth data reveals that the areas which are recognized 

are pasture land, alfalfa, and red clover. The false alarms which occurred were red clover, 

alfalfa, and one corn field (see fig. 6 in the supplement for the results). 

Because it is impossible to tell precisely what the composition of the pasture was (it may 

have contained considerable alfalfa and clover), the only definite false alarm was the corn field. 

In the second recognition picture, an attempt was  made to recognize corn, but soybeans were 

also recognized frequently as corn. Clover was also a false alarm. In the second picture, the 

sunlit part of the large soybean field in the center of the picture was  recognized but the shadowed 

portion was  not. In the third picture, an attempt was  made to recognize wheat. Confusion re- 

sulted with the shadowed section of the large soybean field. 

The confusion between corn and soybeans is particularly difficult to resolve. The confusion 

resulting when cloud shadows f i l l  part of the field of view was expected in the absence of auto- 

matic gain and level controls in the video processing. Cloud shadows are a major problem in 

any discrimination technique (see fig. 7 in the supplement for an example). 

This result indicates the need for a technique of gain control as a function of the actual ir- 

radiation of the surface. No clearly satisfactory solution to the problem of determining the sur-  

face irradiation is apparent yet; however, a form of automatic gain control based on a wide-area 

sensor may be useful. It is also possible that sensing of shadowed areas may be accomplished 
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by noting the difference between blue and red spectral bands, since the blue bands are less sen- 

sitive to shadowing because of the larger amount of scattered blue illumination of the scene. 

Another measure of illumination, but one which is very liable to e r ror ,  is the sensing of illumi- 

nation incident on the aircraft. Only under certain geometries of sun, cloud, and aircraft can 

this be considered useful in shadow correction. 

An experiment has also been performed using the 12-channel processor for discrimination 

of crops. This equipment consists of a wideband analog computer equipped with a set of special- 

purpose plug-in modules to allow the video signals to be sampled and standardized prior to 

serialization for digital-computer tape preparation. Sufficient operational amplifiers a re  in- 

corporated to allow the continuous computation of a parameter related to how closely the 12- 

channel signal matches a given crop signature. Once a signature has been obtained, it may be 

immediately set into the computer and the data may be matched in real  time. E the match is 

within a certain bound preset on a voltage comparator, the comparator indicates the existence 

of a match and its output signal is used as a video signal to generate a strip map showing the 

location and shape of the area matched. 

The same experiment described above, discriminating corn and soybeans, was performed 

with this computer. In this case the spectral signatures of corn and soybeans were obtained 

with the serializer and compared. These spectra are shown in figure 14. Measurement of 

these spectra indicated that differences are greatest in channels 5, 6, 7 ,  8, and 9. Therefore, 

only these channels were used in the recognition process. A test was made with two different 

threshold levels. The desired discrimination of the corn and soybeans was obtained for the 

fields chosen; however, some corn crops appear identical to the soybeans chosen for a reference. 

In this test the detection operation was not completely correct, insofar as the significances of 

differences in signatures were not properly weighted in the operation. It was found that the 

fields recognized are not uniform and, furthermore, there is some dependence of the process 

upon the angular position of the scanner (see fig. 8 in the supplement for the results). 

These experiments with the light pen and 12-channel processor are preliminary in nature 

and are, properly speaking, only initial investigations of some techniques which appear useful 

in the recognition process. The results appear promising and indicate that these techniques 

should be useful both directly and in conjunction with the digital-computer analysis. Using im- 

agery in the form referred to above allows the detection of variability in crop signatures and 

thereby helps to direct the investigation of the sources of variability. For this reason it ap- 
pears that these techniques will be used extensively in the analysis of the data gathered during 

this reporting period. 
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(a) Corn (b) Soybeans 

FIGURE 14. SPECTRAL SIGNATURES OF CORN AND SOYBEANS 
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5.3. PLANS FOR FUTURE WORK 

5.3.1. IMPLEMENTATION O F  TECHNIQUE FOR ELECTRONIC SIGNATURE EXTRACTION. 

During this reporting period the equipment needed to perform extraction of signatures has been 

fabricated and tested on typical data. The ability to extract signatures in the form of photographs 

of the spectrum from specific areas of fields has been demonstrated and allows some limited 

processing. 

The equipment is ready to begin the preparation of tapes suitable for use on a digital com- 

puter and the selection of data for  such analysis is now being made. Regular work on prepara- 

tion of digital tapes should be underway in October. 

A principal difficulty in the extraction of signatures arises when the areas to be examined 

are  only a small part of the field of view of the scanner. The presently planned method of ex- 

traction in this case is to use film as a transfer medium and calculate the electrical equivalents 

of particular gray scales. A much more powerful and convenient method, the use of a cyclic 

storage device to allow repeated and regular representation of the data from a given number of 

scan lines, has been considered in the past. Such devices could be built from endless-tape 

loops, rotary-head tape scanners, digital core memories, and digital drums or discs. Their 

limited flexibility or  their high cost were major disadvantages in all of these devices. 

The solution which now appears very attractive involves the use of a digital storage device, 

a drum memory, to store analog data in the form of PFM. If the data stored on FM tape are 

simply transferred without demodulation, 12 channels at a time to a drum in such a manner 

that 12 tracks of the drum are filled with the next scan lines, a complete history of all 1 2  chan- 

nels may be gathered on the drum in sequence as the tape is examined. Once a target has been 

found, the process may be stopped and the spectral characteristics are located within the drum 

storage capacity. 

The drum may now be used to cyclically replay the data through demodulators and this re- 

play may be limited to only those scanner lines of interest under digital control of the drum- 

track selection. The serializes may then be used to obtain spectral information from any ar- 

bitrarily small area or object in the data. 

It is planned to test this technique as soon as possible with an available drum which is 

reasonably well suited to this operation. 

5.3.2. INVESTIGATION OF SPECTRUM-MATCHING TECHNIQUES. The experimental 

investigation of electronic spectrum- matching or recognition techniques will be continued more 

intensively during the next period. Particular attention will be paid to determining the effects 

of experimental equipment, environment, and scene geometry on the recognition process. Both 
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the light pen and the 12-channel processor will be used for this purpose. Analog and digital 

techniques that use the full potential of the statistical properties (e-g.) correlations between 

spectral channels) of the signatures will also be investigated. Determination and cataloguing 

of recognizable crops will be pursued, as will cataloguing of recognizable objects €or other 

possible applications. 

Another area of interest, which has an unknown potential as yet, is that of contrast en- 

hancement. Although the function of contrast enhancement may be thought of as an intermediate 

step in the recognition process, it may be that in some cases it will help image interpreters to 

perform better than a mechanized recognition technique. Some possible applications of contrast 

enhancement have already been noticed in the discrimination of live from dead o r  diseased veg- 

etation and in increasing contrast of man-made objects with respect to their surroundings. 
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6 
ANALYSIS OF 1964 DATA 

During the time that the 1964 multispectral data were obtained and during the year that 

followed, relatively little quantitative analysis was performed on these data, but a fair amount 

of qualitative analysis was  performed [2]. For the main quantitative effort, transmittance read- 

ings on image transparencies were made at Willow Run Laboratories (WRL) with a film densi- 

tometer on approximately 50 points of interest, and a statistical analysis of some of these in- 

dicated that distinguishable multispectral signatures do exist [7]. 

It was proposed under the present grant extension that additional densitometer readings 

would be made and that the earlier quantitative analysis would be expanded and continued. Pr ior  

to this, however, it was deemed essential to investigate both (1) the extent to which the data- 

gathering instruments and the subsequent data-processing equipment might have affected the 

densitometer readings and their interpretation, and (2) the possibility of calibrating the 1964 

data "after the fact" by self-calibration methods. The results of these investigations, as dis- 

cussed in detail below (secs. 6.1 and 6.2, respectively), a r e  such that the making of additional 

densitometer readings for the purpose of signature studies was  deemed unadvisable since (1) it 
is not possible to quantitatively evaluate and reliably correct the readings for the chief delete- 

rious instrumental effects and (2) the average quality of the imagery is poorer than that which 

is now attainable. The need for calibration in the data and for corrections of certain instrument 

e r ro r s  has prompted various modifications and improvements in the data-gathering instrumen- 

tation for the 1966 season, as discussed in sections 3 and 4. 

Another important parameter in the production of imagery and multispectral data by remote 

sensors is the geometry of observation and illumination. There can be marked changes in the 

observed radiation from a given crop o r  combination of crops dependent upon the angle of ob- 

servation [13] and (in spectral channels in which reflected light predominates) upon the position 

of the sun and the distribution of clouds. Such angle-dependent variations were and are being 

studied both experimentally from photographs and theoretically from models of reflectance 

geometry (see sec. 6.3). 

6.1. INVESTIGATION O F  INSTRUMENT EFFECTS 

Multispectral data a re  obtained with two types of instruments, optical-mechanical scanners 

and photographic cameras. Each type exhibits its own variations caused by the angle of obser- 

vation (measured from the nadir); in the imagery they are superimposed on any angle-dependent 
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variations of the crop reflectances. Furthermore, the film processes that were used to record 

the images introduce added variations and uncertainties. 

6.1.1. SCANNERS. Optical and electronic effects in the scanners produced changes in the 

detector signals as the field of view was scanned across  the scene. It has been learned that the 

fi l ters on the four-element array of infrared detectors did not provide uniform filtering for all 

observation angles and consequently there were angle-dependent variations caused by changes 

(as yet not thoroughly documented) in the spectral response of the four channels. Much less  

serious angle-dependent variations caused by the optics of the other scanners were probably 

present. In many s t r ip  maps, instrument noise degraded the image quality. 

The electrical outputs of the detectors used in the scanners were ac coupled into the ampli- 

fier stages. At the scanning frequency used (e.g., -60 scans/sec), one can consider the simpli- 

fied output of one detector to be a rectangular wave with one-quarter of a cycle (-80') corre- 

sponding to the desired signal from the scene and the remainder of the cycle corresponding to 

the signal from the inside of the scanner (see fig. 15a). The absence of dc coupling causes the 

amplified version of the rectangular wave to exhibit a droop (fig. 15b). This droop is partially 

explained by the low-frequency cutoff of the coupling circuit, that is, the lower the cutoff fre- 

quency, the less  the droop. Measurements made on the scanner electronics after the conclusion 

of the 1964 missions show that the maximum droop would have been approximately 15% of the 

peak-to-peak value of the square wave. Two facts preclude the correction of the data for the 

droop effect: (1) the peak-to-peak value of the square wave and therefore a percentage of this 

value (i.e., the droop) depend upon the relative radiances of the scene and the inside of the 

scanner (in certain spectral bands, the inside of the scanner may be as radiant as or more ra- 

diant than the scene), and (2) the signals generated by the inside of the scanner were not pre- 

served during the tape-recording process in the airplane (i.e., they were gated out) and the 

playback gains were adjusted to obtain "best" images. 

The final step, that of recording tape-recorded scanner signals on film, introduces a third 

potential source of angle-dependent variations in the output imagery. In this process, the am- 

plified detector output signals are used to modulate the intensity of a cathode-ray tube (CRT) 

which is imaged on the recording film and is swept across it in correspondence with the motion 

of the scanning mirror  across  the scene; the film is slowly moved perpendicular to the CRT 

trace to provide the second dimension for the imagery. There are three factors affecting the 

densities which one might read from a transparency so  produced. First, there is the nonlinear 

relationship between density and exposure for the film; the procedures used to expose and pro- 

cess the film were not documented and thus there is no reference from which to extract this 

information. Second, when a constant input voltage is applied to the CRT, the amount of exposure 
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FIGURE 15. SIMPLIFIED SCANNER OUTPUT VOLTAGES 
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across  a scan line varies, i.e., there is more exposure at the center of the line than at the 

edges; in addition, nonuniformities in the CRT phosphor produce other irregularities in the film 

traces. Figure 16, a plot of relative density vs. position across  a film in a direction parallel 

to the scan line as measured with a long narrow aperture that spanned several scan lines, illu- 

strates these effects; note that the traces deviate more and more from the ideal horizontal 

lines as the intensity (and therefore the density) increases. 

the motion of the film past the CRT so that underlap and overlap occurred between adjacent 

scan lines; these variations increase the variability of densitometer readings. The above fac- 

tors  contributed in large part to the decision to analyze the 1966 detector output voltages direct- 

ly without first transferring them onto film. 

* Third, there were variations in 

The scanners used to obtain data in 1964 were uncalibrated, as were all operational infra- 

red and optical scanners at that time; section 4 describes the calibrations which have been 

added to the WRL scanners to make the 1966 data more useful. 

6.1.2. CAMERAS. With uncompensated cameras, there is a falloff of illumination in the 

film plane from a uniform diffuse radiator. From a simple geometrical point of view, this 

falloff is proportional to the fourth power of the cosine of the angle from the center of the field 

of view. Such effects a r e  discussed in reference 27. For imagery obtained in 1964 with the 

73.7O-field of view (FOV) K-17 cameras (Le., in both the 0.4- to 0.7-p and 0.7- to 0.9-p re-  

gions), a K-star filter which has a spatially variable transmittance w a s  used near the objective 

lens to compensate for this falloff; the extent to which the compensation was successful has not 

been measured quantitatively, but to the eye there is a very noticeable improvement even though 

there does remain some falloff at the edges of the pictures. The smaller FOV nine-lens camera 

on the other hand was not corrected and a falloff of at least cos is estimated for its pictures. 

Figure 17 illustrates the magnitude of a cos falloff vs. off-axis viewing angle. 

4 

4 

The other major factor that affects the densities produced on film is the generally nonlinear 

relationship between the actual exposure E and the density D produced. There probably are 

variations of a few percent in the shutter speed and therefore in the actual exposure values. 

The well-known curve of D vs. log E is illustrated in figure 18. The slope of the linear part of 

the curve is the development factor y. As its name implies, y depends upon, among others, the 

developer used for the particular film and on the development time; a long development time 

produces a large y. The photographic data obtained during 1964 were not initially intended for 

quantitative analysis, so the development time was  varied from roll  to roll to obtain the best 

looking pictures, and the development parameters were not recorded. Consequently, new 

*Some of the noise on the traces is caused by scratches on the test film strip. 
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procedures were developed for processing the photographic data obtained on the 1966 flights. 

They involve standardized gray scales which are placed periodically throughout each roll  along 

the margins of the film prior to development and the documentation of the development param- 

eters ;  the illuminating source for the gray scales is spectrally filtered to represent the sun’s 

energy distribution, and is further filtered by filters similar to those used in the cameras dur- 

ing their respective data-collection missions. 

6.2. SELF-CALIBRATION ATTEMPTS 

To obtain definitive quantitative data from imagery and compare sets of data obtained at  

different times and under different conditions, the data must be calibrated. Since the 1964 data 

were uncalibrated (sec. 6.1.21, self-calibration methods were investigated (in parallel with the 

investigation of instrumental effects) for both scanner and nine-lens imagery. 

The technique investigated in both of the self-calibration methods involves the selection of 

one or more standard objects in the scene for which radiance values (or quantities related to 

radiance, such as temperatures) can be and are estimated on the basis of other data on condi- 

tions at  the time the data were collected. These radiance or  temperature estimates are then 

to be related to the measured densities of the standards in the imagery, and from these relation- 

ships corresponding values for other objects a re  to be estimated from their respective densities. 

To be most useful, a standard object should be uniform in composition and be located in 

each of the several flight passes which were required to cover the Agronomy Farm; roads were 

the only objects meeting this requirement, so they were selected for the standards. 

6.2.1. THERMAL INFRARED SCANNER IMAGERY. Two roads were selected as standards 

for the thermal infrared scanner channels, the concrete divided highway US 52 and the grass  

roads which subdivide many of the larger plots on the Agronomy Farm. Another essential re- 

quirement of a standard thermal object is that its temperature be calculable as a function of 

time throughout the data-gathering period, and such calculations were possible for the roads 

by using an existing digital-computer program at WRL which was adapted for the calculation of 

the temperatures of the two roads. 

Two types of input data were required for the computations of surface temperatures: ma- 

terial  properties and meteorological conditions. The material properties include the thermal 

conductivity and the thermal diffusivity as functions of depth, the albedo (fraction of solar ra- 
diation that is reflected), the total mean hemispheric emissivity, and an aerodynamic roughness 

of the surface for convective calculations. Purdue provided data on the amount of soil moisture 

near the surface and a qualitative description of the soil profile. It was necessary to apply and 

extrapolate data obtained from the literature [14] to complete the description of the soil 
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properties beneath the grass  road and beneath the base of the concrete road. An energy-weighted 

average albedo was  obtained for grass  from pyranometer measurements made by Purdue on one 

1964 mission, and emissivity and aerodynamic-roughness values were obtained from reference 

15. The concrete road and its base were assumed to  have properties similar to those of the 

east ramp of Willow Run Airport for which estimates were available. 

The time-dependent meteorological parameters needed as inputs to the program include 

solar-radiation intensity, air temperature, relative humidity, wind velocity, and cloud cover. 

The first three of these were measured at the Agronomy Farm and for the most part were suf- 

ficiently accurate and continuous for the purpose, although interpolations through data gaps were 

necessary. The wind velocity and cloud cover were not measured at the site, but data from the 

U. S. Weather Bureau station at  Purdue Airport were available and were used without extrapola- 

tion. 

It was  also necessary to account for the evapotranspiration from the grassy areas. The 

only data available with which to estimate this factor were the total daily amounts of evapora- 

tion from a standard water pan at the site. An estimate of the total daily evapotranspiration of 

the grass  was then made by using very crude values [15] for the ratio of vegetation evapotrans- 

piration to pan evaporation. This daily total was  then assumed to be distributed throughout the 

day in direct proportion to the solar-radiation intensity. 

The results of the calculations for the mission of 2-4 June 1964 are presented in figure 19. 

As can be seen, there is a considerable difference between the temperatures of the two roads 

throughout each 24-hr period. It was  decided to obtain some knowledge of the possible e r ro r  

o r  uncertainty in the computed values of surface temperature. Because of the nature of the 

calculations involved, the uncertainty in surface-temperature calculation caused by the uncer- 

tainty in a single input is not independent of the other inputs. Consequently, since there are as 

many as 11 input parameters (5 material, 5 meteorological, and evaporation), each with two 

possible values (the e r ro r  being describable by an upper and lower bound to the parameter), a 

full e r ro r  analysis requires 211 combinations of input for each case calculated, each combina- 

tion leading to a different calculated surface-temperature variation. Since such an analysis 

was entirely out of the question, it was  decided to find the calculation e r ro r  produced by only 

the most uncertain input. For the grass  field, the greatest uncertainty was in the magnitude of 

the evapotranspiration. Consequently, the grass  temperature was computed for assumed e r ro r s  

of *20% in the value of evapotranspiration. These results are also shown in the figure. For 

the concrete, no one input stood out as being most uncertain; consequently, no such e r ro r  anal- 

ysis was  made. 

Densitometer readings were made on the 4.5- to 5.5-p s t r ip  maps that were produced 

throughout the day on 3 June 1964. In all cases, as predicted, the concrete road was  more 
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responsive (had lower film transmittance) than the grass  road (see table N). Among the four 

or  five passes made on any one flight, one can observe a considerable variation in the average 

transmittances measured for the two roads; these variations point out the uncertainties in- 

volved in making densitometer measurements on uncalibrated infrared s t r ip  maps of nonuniform 

quality. Upon comparing the transmittances measured for fields of oats, wheat, alfalfa, and 

* 

grass  with those of the two roads, one sees that the majority of the crop transmittance values 

are greater than those of the grass  road, which means that they are less responsive than either 

of the roads (see table V for a description of the crops measured). The reason for this condi- 

tion is not known; it may be that (1) the emittances of the grass  road and the crops differ be- 

cause of natural differences or because of the compacting caused by vehicles, (2) the actual 

effective surface temperatures of the crops a re  lower, o r  (3) a combination of both. Therefore, 

despite the fact that the calculated difference in road temperatures was at least 20°F and a s  

much a s  33'F in one case, the crops' apparent temperatures (and transmittances) lie outside 

this span.** Consequently, one cannot reliably estimate the apparent temperatures of the crops 

by extrapolation because the curve of D vs. log E of the film is not known. 

From the experience gained in attempting to predict the temperatures of the roads during 

1964, suggestions were made and forwarded to Purdue University for obtaining meteorological 

data and crop data for the 1966 flights so as to improve the reliability of the input data for 

similar calculations at a later date. An uncertainty about the adequacy of data remains, since 

there w a s  no way to check the calculations made for 1964. With good ground truth and an im- 

proved, calibrated infrared scanner, the outcome of similar studies on the 1966 data is much 

more promising. 

6.2.2. NINE-LENS CAMERA IMAGERY. The essential items for a quantitative analysis 

of crop densities on the nine-lens photographic plates a re  the applicable curves of density vs. 
log exposure. These items a re  not known directly for the 1964 flights because the parameters 

used during the development of the plates were not recorded; consequently, the curves can be 

determined only indirectly. The most desirable approach would have been to have placed a 

sensitometric step-intensity wedge (gray scale) on each nine-lens plate at the time of original 

exposure or  at least before development. If the development conditions had been recorded, one 

might determine D-log E curves for similar plates under similar exposure and development 

* The transmittances were measured along the same sections of the film as were the fields 
of interest; each value presented is an average of three or more readings. 

(point 58) are most like those read for the road and a re  considerably different from alfalfa in 
bloom (points 77, 78, and 79). Also note the differences between Knox wheat (point 102) and 
Purdue 4930 wheat (point 115). 

**Densities read for the grass  field (point 74) and the clipped bromegrass-alfalfa pasture 
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conditions. The final recourse is to use the densities of one or more objects (self-calibration 

standards) in the scene to calibrate the film. 

There a r e  four steps to be followed in the self-calibration procedure. As with the thermal 

self-calibration method, one must first select objects whose spectral reflectances p A  are known 

or can be reliably estimated. Second, one must estimate the spectral illumination 5 on the ob- 

jects at the time of exposure. Third, one must calculate both the relative values of effective 

irradiance H' of the objects in each spectral band of the camera and, by using the various aper- 

ture settings, the corresponding relative exposure values E' on the film. Finally, one plots in 

each spectral band the measured densities of the standards vs. the logarithm of the calculated 

relative exposure values. These plots a r e  estimates of the characteristic curves of the film. 

If the plate was  originally exposed on the linear part of its D-log E' curve, two points (or stan- 

dards) wil l  define the linear part in each spectral band; if ,  in addition, a single D-log E' curve 

is applicable for all spectral bands, a single standard object may suffice. 

A nine-lens plate made near noon on 29 September 1964 was selected for the trial attempt 

at self-calibration. The zenith angle of the sun was about 43O, which corresponds to an optical 

path containing an a i r  mass of 1.36 atm [16]. Interpolation was  made between Gates' theoretical 

curves of global radiation [17] (Le., the light scattered from a complete hemisphere of sky as  

well a s  that received directly from the sun) for air masses of 1.0 and 1.5 atm, and the result 

was  used as an approximation to the spectral irradiance on the horizontal surfaces at the time 

the selected plate was exposed. The biggest uncertainty in this approximation lies in the trans- 

mittance of the atmosphere. The aerosol content of the air appears to have a greater effect on 

the atmosphere's transmittance in the visible than does water-vapor content [17], but there 

were no data collected during the 1964 (nor 1966) missions on aerosol content, although water- 

vapor content (relative humidity and temperature) records were kept. 

The radiation that reaches the camera is not all equally effective in producing exposures 

in the various spectral bands; that is, the lens of the camera, any filters used, and the film 

plate itself all have spectrally dependent properties. The overall spectral response assumed 

for the calculations is the product of the relative spectral characteristics of lens, filters, and 

film as obtained from figures 20, 21, and 22, respectively. Spectral transmittance properties 

of the atmosphere between the object and the camera were not accounted for directly, but the 

solar illumination function used does incorporate average atmospheric transmittance effects. 

The standard objects selected were the grass  roads between various plots on the Agronomy 

Farm. To approximate their spectral reflectance, use was made of measurements made by the 

Photometry and Colorimetry Section, National Bureau of Standards, for The University of 

Michigan on a sample of sod obtained from a lane in an apple orchard (see fig. 23). 
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To calculate the relative exposure values for the film plate, the product of the spectral 

curves of illumination, sod reflectance, and camera response was integrated over each spectral 

band of the camera; for  computational purposes, discrete values at intervals of 0.01 p were 

used for  each of the curves. The integrated values are related to the actual exposures that pro- 

duced the film-plate densities by both a common constant of proportionality (that accounts for 

the normalizations of the spectral curves) and the individual aperture settings used for the nine 

lenses. The only record that could be found for the aperture settings during 1964 was made 

early in the summer, and there is no way to determine i f  and how they were changed during the 

season. The ratio obtained by dividing the collecting area of each spectral band (a function of 

its f-stop) by that of the band with the largest f-stop setting (see table VI) was  used to obtain 

estimates of the actual relative exposures. These estimates were plotted against the densities 

measured on the selected nine-lens plate* for the grass  road (see fig. 24). Note that all points 

except those for the bands 0.62 to 0.68 p and 0.45 to 0.52 p (marked with x's) lie close to a line 

with slope -0.75; the point for 0.62 to 0.68 p in particular is quite far removed. The locations 

of these two points may result from an aperture setting which was changed from the initial 

value assumed and thus produced an underexposure, an inaccurate estimate of the reflectance 

of the grass  road, or  some other reason. For the calculations here, it is assumed that a change 

of one f-stop setting was  made in these bands on the camera (after the initial settings were re- 

corded) so a s  to move the two points closer to the line and that, after the appropriate adjust- 

ments, the line (y  - 0.75) in figure 24 applies equally to all  bands. The latter assumption in 

effect is equivalent to a modification in the assumed spectral reflectance of the grass  road. 

Attempts were made to use a gravel road a s  a second standard to determine the film properties, 

but results with the available (poor) reflectance data were not satisfactory.** 

From the camera's aperture factors for the various bands (table VI) and the assumed char- 

acteristic curve of figure 24, one can compute the estimated effective diffuse reflectances of 

other objects whose densities are read on the film plate. 

fields of corn, two fields of orchard grass, one field of soybeans, and one field of alfalfa. The 

results of these computations are presented in figure 26; the reflectance estimates for each 

band are plotted at the center wavelength of the band. The corn and soybean reflectance esti- 

mates agree quite wel l  with some laboratory leaf measurements; also, they seem to be very 

*** Densities were read for three 

The image for the band 0.41 to 0.47 p was noticeably distorted in the processing of the * 
plate and therefore no readings in it are included here. 

**There is some justification for using a single object to calculate the characteristic 
curve of the film. The gradient (and therefore probably the development factor) of the film 
plate used is, according to one set of Kodak data, within 5% of its average value for all wave- 
lengths except those between -0.43 and -0.49 p, at which it may depart by as much as 15% or  
slightly more (see fig. 25). 

for the transfer function of this intermediate photographic process. 
***Densities were actually read on 9X positive enlargements of the scene and were corrected 
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Wave length 
Band 
( P I  

TABLE VI. APERTURE FACTORS FOR 9-LENS CAMERA 

0.38 to 0.44 

0.45 to 0.52 

0.48 to 0.56 

0.38 to 0.89 

0.55 to 0.64 

0.62 to  0.68 

0.71 to 0.79 

0.85 to 0.89 

F-Number 
Setting 

f/16 

f / l l  

f /8 

f/4.5 

f/3.5 

f/5.6 

F-Number 
Setting 

f / l l  

f/5.6* 

f/5.6 

f/16 

f/5.6 

f /5.6** 

f/5.6 

f/3.5 

Relative Aperture 
Factor 

1 .oo 
2.11 

4.00 

8.16 

12.6 

20.9 

Relative 
Aperture 

Factor 

2.11 

4.00 

8.16 

1.00 

8.16 

4.00 

8.16 

20.9 

*Revised by assumption from initial setting of f/8. 

Revised by assumption from initial setting of f/4.5. ** 
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similar except for a slightly higher reflectance that is observed for soybeans in the infrared 

bands. Alfalfa and orchard-grass estimates are also similar to each other except in the infra- 

red, where the alfalfa is slightly higher. Note that orchard-grass field B exhibits a substan- 

tially greater difference in reflectance between the bands 0.55 to 0.64 p and 0.62 to 0.68 p than 

does field A, which-was not as green. Upon comparing all four graphs, one notes that in the 

first four bands, starting at the short-wavelength end, the alfalfa and orchard grass  have con- 

sistently higher reflectances than do the corn and soybeans; the reverse is true in the 0.62- to 

0.6% - p band. 

In summary, a technique has been demonstrated for self-calibrating multilens imagery to 

provide estimates of the spectral reflectances of objects; it would also be applicable to the set- 

ting of multilens camera apertures for field use. The uncertainties in the parameters used to 

record and process the 1964 film plates necessitated assumptions which reduced the confidence 

in the accuracy of the reflectance estimates enough to discourage an extensive use of the tech- 

nique on the 1964 data. Nevertheless, comparisons made between the estimated spectral re-  

flectances and laboratory curves show quite good agreement, and differences are noted between 

types of crops. Since the estimates can be no better than the standards, standard panels of 

known reflectance were deployed during the 1966 missions. 

6.3. INVESTIGATION OF ANGLE-DEPENDENT EFFECTS 

In spectral regions where reflected radiation is the major component of crop radiances 

(i.e., the ultraviolet through the near-infrared regions), the geometrical positions of both the 

illuminating sources and the observing sensor relative to the crop and its row structure (if any) 

have a strong bearing on the power observed. Two adjacent but different crops which a re  in- 

distinguishable at one observation angle can sometimes be readily differentiated when observed 

from some other angle, as is shown for corn and wheat in figure 27. 

There had been little quantitative effort to determine the extent and character of such angle- 

dependent variations from photographs of crops, so a study of this type w a s  initiated. The pho- 

tographs available from the 1964 missions had several  faults (see sec. 6.3.2), but yet were felt 

to be good enough to give some useful clues that could be explored further in the 1966 flights. 

To complement the experimental data, a theoretical model was developed and used to make 

estimates of the angle-dependent radiances of row crops such as corn and soybeans. These 

theoretical studies a re  discussed in section 6.3.2.3; comparisons are also made, where possible, 

between the experimental and the theoretical results. 

6.3.1. POSITION O F  THE SUN. The sun, when present, is the dominant source of the light 

that is reflected by the crops. Since it can be considered a point source, a simple relationship 
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FIGURE 27. EFFECTS OF VIEWING GEOMETRY ON CORN AND WHEAT FIELDS 25 June 
1964; 0.4- to 0 .7 -p  region; altitude 4500 ft; 1430 hours. 
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can be used to calculate the reflection geometries. The presence of clouds (which can be dis- 

tributed throughout a hemisphere) greatly complicates the calculations and produces effects on 

photographs that are hard to differentiate from the clear sky and direct solar effects on crop 

irregularities. Consequently, the theoretical calculations were made with only the sun as a 
source, and attempts were made to find photographs for the experimental work that were made 

under conditions of little o r  no cloud cover. 

The angular position of the sun varies in both azimuth and elevation throughout each day. 

There are also substantial variations with time of year and with latitude in the track that it 

makes across  the sky over a given area. The approximate positions of the sun at Lafayette 

during the times of the 1964 flights were calculated from reference 18, and the results are pre- 

sented in graphical form in figure 28. All sun-position data used in the analysis were taken 

from similar data. 

6.3.2. PHOTOGRAPHIC STUDIES. Low-altitude photographs, high-altitude photographs, 

or both can be used to explore the two-dimensional bidirectional reflectances of crops.* Each 

type has advantages and disadvantages. 

At a given time, all portions of a flat field a r e  illuminated by the sun at a given angle, and 

the radiation is reflected by the crop into a hemisphere. Equal amounts of radiation a r e  not, 

in general, reflected in all directions; therefore, the crop usually has a nonuniform bidirectional 

reflectance which one would like to measure.** For the given illumination condition, a single 

low-altitude photograph contains many portions of the field that are observed at  a variety of 

angles relative to the vertical and azimuthal axes. To infer something about the bidirectional 

characteristics of the crop's reflectance from density measurements on the film, one must 

assume that each sample of the crop has the same reflection properties as its neighbors. When 

there a re  nonhomogeneities in the crop, they become confused with variations in the bidirectional 

reflectances of the crop. The analysis of low-altitude photographs taken in 1964 is discussed 

in section 6.3.2.1. 

With high-altitude photographs, on the other hand, the field covers only a small portion of 

the frame and is observed at essentially a single angle, and the effects of nonhomogeneities can 
3 * 

The distinction here between high- and low-altitude photographs is made according to 
the sizes of the images of the fields relative to the frame size of the camera. In a low-altitude 
photograph a field fills all o r  much of the frame, whereas the field fills only a small part of a 
high-altitude frame. 

With the available photographs one cannot directly measure the bidirectional reflectance 
because the illumination on the crops was  not measured at the same time; one can only investi- 
gate the angle - dependent shapes of the reflectance distributions. 

** 
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be minimized by averaging. One difficulty, however, is that many different frames a t  a variety 

of observation angles are needed to obtain information on the shape of the crop's bidirectional- 

reflectance distribution for the given illumination condition. Also, the effects of atmospheric 

absorption are more pronounced than for low-altitude photographs. Densities in photographic 

negatives from one high-altitude mission in 1964 and a ser ies  of high-altitude photographs that 

were made during a local 1966 test flight in Michigan were analyzed. The results of the analy- 

ses are discussed below; the 1966 photographs are included in this report because the analysis 

relates very well to the studies made on the 1964 photographs. 

6.3.2.1. Low-Altitude Photographs. The small field sizes of the Purdue Agronomy Farm 

increased the difficulty of obtaining angle-dependent data from photographs. Only one crop 

(corn) was  planted in a field large enough to fill a complete camera frame, even at an altitude 

of 500 ft. In order to obtain any usable data on other crops, such as wheat and soybeans, more 

than one frame had to be analyzed and combined to form a composite sample of the crop's re- 

flection properties; even then, the composities a re  incomplete in many cases. 

In analyzing the low-altitude photographic negatives, the first step was to locate and mark 

both the center of the frame and sixteen points equally spaced around its  periphery (every 

22.5'). Radial traces were then made from the center outward in each direction by a line- 

scanning densitometer (see fig. 29a). The resultant curves were then smoothed and each w a s  

sampled at  distances which correspond to off-nadir viewing angles of 2O, 5O, loo, 15O, 20°, 25O, 

30°, and 35' from the vertical. A curve was then plotted on polar graph paper from the set of 

points for each off-nadir angle; the radial scale indicates the measured density and the angle 

scale the azimuth direction in which the camera looked (see fig. 29b). To interpret t races  such 

as those of figure 29b, it is helpful to consider a three-dimensional sketch of the geometry of 

the situation (fig. 29c). When one looks toward the direction of the sun, the light reaching the 

camera is reflected forward by the crop; when looking away from the sun's azimuth, the light 

is reflected back; in general, crops appear to be better back reflectors than forward reflectors 

at the off-nadir angles considered. The same density data were also used to plot linear graphs 

equivalent to the polar graphs of density vs. view azimuth (see fig. 29d). A different form of 

data presentation is discussed in section 6.3.3.2. 

Approximately one hundred frames were so analyzed in total o r  in part. From these, three 

examples are presented in figures 20 through32 for wheat, corn, and soybeans; parts a and b 

a re  the polar plots and parts c and d are linear plots for off-nadir angles of 2' through 15' and 

20' through 35O, respectively; the numbers on the graphs indicate the elevation angles of the 

points as listed on the data sheets (part e of each figure). The reader is cautioned to avoid 

making comparisons between the density levels on these graphs because the photographs were 
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(a) Radial Density Traces on Film (b) Idealized Polar Plot of Measured Density 
vs.  Viewing Azimuth Angle 
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FIGURE 29. ILLUSTRATIONS TO EXPLAIN DENSITY PLOTS 
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180' 

(a) Polar Plot, Off-Nadir Angles of 20 (l), 5O (2), 100 (3), and 15O (4) 

(b) Polar Plot, Off-Nadir Angles of 200 (5), 250 (6), 30° (7), and 35O (8) 

FIGURE 30. SAMPLE PLOTS FOR WHEAT. 0700 hours, 3 June 1964. 
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(c) Linear Plot, Off-Nadir Angles of 2O ( l ) ,  
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(d) Linear Plot, Off-Nadir Angles of 20' (5), 
50 (2), loo (3), and 15' (4) 

DATE/TIME/TYPE OF PHOTO 

640 603/0700/V 

FRAME NO. 75 

SOLAR AZM. 
FROMN. 73' 

SOLAR ALT. 14' 

CROP DESCRIPTION: 

TYPE Wheat 

VARIETY 52 10 Breeder 

PLOT(S) 110 

ROW AZM. 
FROM N. 0 

FT . 
ROW SPACING 

PLANTING DATE 
24 Sept. 63 

25' (6), 30' (71, and 35' (8) 

CAMERA DATA: WEATHER DATA: 

FILTER(S) K-2 Star VIS.= x m i l e s  

FSTOP F 6.3 SKYCOVER= 0 

SHUTTER SPEED TOTALOPAQUE 

FRAME RATE 3 sec. AIRTEMP. 53 O F  

SKYCOVER= 0 1/200 sec. - 

DEWPT. 51 O F  

WIND 
DIR. 280 ' 
SPEED 4 K  

PRESSURE 992.3 mb 

HEIGHT 30 - 36" 

SOILS 3398 

LEGEND FOR CURVES: 

STATE Fully Headed 1 = 2O 

3 = loo 
0 2 = 5  

4 = 15' VIEW 
5 = 20° ANGLES 
6 = 25' 
7 = 30' 
8 = 35' 

(e) Data Sheet 

FIGURE 30. SAMPLE PLOTS FOR WHEAT. 0700 hours, 3 June 1964. (Continued) 
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180' 

(a) Polar Plot, Off-Nadir Angles of 2O (11, 5' (2), 10' (31, and 15' (4) 

(b) Polar Plot, 

180' 

Off-Nadir Angles of 20' (5), 25' (6), 30' (7), 35' (8) 

FIGURE 31. SAMPLE PLOTS FOR CORN. 1430 hours, 25 June 1964 
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APPROXIMATE VIEW AZIMUTH (north = 0') 

(c) Linear Plot, Off-Nadir Angles of 20 (l), 
5O (2), 10' (3), and 15O (4) 

DATE/TIME/TYPE OF PHOTO 

640625/1430 V 

FRAMENO. 7 
SOLAR AZM. 

FROMN. 240 

SOLARALT. 63 

APPROXIMATE VIEW AZIMUTH (north = 0') 

(d) Linear Plot, Off-Nadir Angles of 200 (5), 
25O (6) ,  30' (7), and 35' (8) 

CAMERA DATA: 

FILTER(@ K 2 Star 

FSTOP F 8 

SHUTTERSPEED 
1/200 sec. 

FRAMERATE 3 sec. 

CROP DESCRIPTION: 

TYPE Corn HEIGHT 38" 

VARIETY Pfister SX29 SOILS 128-  3398 

PLOT(S) 128, 129 129 - 3398, 3399 

ROW AZM. STATE 
FROM N. 93' Photo: uniform 

ROW SPACING 
FT . 

PLANTING DATE 

128 - 7 May 64 

129 - 8 May 64 

(e) Data Sheet 

WEATHER DATA: 

VIS.= x m i l e s  

SKYCOVER= 0 

TOTAL OPAQUE 

AIR TEMP. - 85'F 

DEWPT. - 61°F 

WIND 

SKYCOVER= 0 - 

DIR. 270' 
SPEED 6 K 

PRESSURE 999.2 mb 

LEGEND FOR CURVES: 

1 = 20 
2 = 50 
3 = 100 
4 = 15' VIEW 
5 = 200 ANGLES 
6 =  25' 
7 = 30° 
8 =  35' 

FIGURE 31. SAMPLE PLOTS FOR CORN. 1430 hours, 25 June 1964. (Continued) 
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180' 

(a) Polar Plot, Off-Nadir Angles of 5' (2), loo (3), and 15' (4) 

(b) Polar Plot, Off-Nadir Angles of 20' (5), 25' (6), 30' (7), and 35' (8) 

FIGURE 32. SAMPLE PLOTS FOR SOYBEANS. 1315 hours, 29 July 1964. 
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(d) Linear Plot, Off-Nadir Angles of 20' 

(5), 25' (6), 30' (7), and 35' (8) 

DATE/TIME/TYPE OF PHOTO CAMERA DATA: WEATHER DATA: 

640729/1315/IR FILTER(S) K2 + 87 

FRAME NO. 1 2 2  FSTOP F 8  

SOLAR AZM. SHUTTER SPEED 
FROM N. 190' 1/100 sec. 

SOLAR ALT. 68' FRAME RATE 3 sec. 

CROP DESCRIPTION: 

TYPE Soybeans d 

VARIETY Harosoy 63 

PLOT(S) 106 & 107 

ROW AZM. 
FROMN. 180' 

ROW SPACING 
FT. 

PLANTING DATE 

21 May 1964 

HEIGHT 40 ins  

SOILS 106 - 3398 

107 - 392 

STATE Photo: uniform 
appearance 

(e) Data Sheet 

VIS.= =miles 

SKY COVER = 0.3 

TOTALOPAQUE 

AIR TEMP. 83'F 

DEW PT. 63'F 

WIND 

SKY COVER = 0.3 - 

DIR. - 020° 
SPEED X K  

PRESSURE 1011.6 mb 

LEGEND FOR CURVES: 

1 = 20 
2 = 50 
3 = 100 
4 = 15O VIEW 
5 = 200 ANGLES 
6 = 25O 
7 = 30° 
8 =  35O 

FIGURE 32. SAMPLE PLOTS FOR SOYBEANS. 1315 hours, 29 July 1964. (Continued) 
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made at different times of day and year andthe exposure and development factors were not 

necessarily the same in each case; also, compensation was not made for  any roll, pitch, o r  yaw 

of the aircraft. Therefore, in general, one can compare negatives obtained from the same roll  

of film only, and, even then, care  must be exercised. For example, on one flight with a cloud 

cover of only 20%) one of the fields analyzed was in the shadow of a small cloud at the time it 

was photographed by one of the cameras and had a density level much lower than would be ex- 
pected in comparison with the other fields photographed on the same flight. There might also 

be some variations in film response and processing throughout the roll  of film which could 

make direct comparisons less accurate. 

Two types of composite graphs of interest in discriminating between various types of crops 

can be made from such data as in figures 30-32. The first  graph indicates, as a function of the 

off-nadir angle of view, the range of density values observed for each of several fields when 

data over all view azimuths are included.* Figures 33 through 35 compare the densities for 

Pfister corn, Reed wheat, and 5210 Breeders wheat (for more complete descriptions of the 

corn and Breeders wheat, see figs. 31e and 32e; the Reed wheat was 37 in. high) for mission 

times of 0630, 1030, and 1430** on 25 June 1964; part a of each figure is for the infrared film 

(0.7 to 0.9 p )  and part b is for the visible (panchromatic) film (0.4 to 0.7 p). Note that complete 

data at all angles were not available to make the plots, and all observations made below are 

subject to this incompleteness. In the infrared (fig. 33a), there is almost complete overlay of 

the corn and the two types of wheat at all  angles. From figure 33b, it can be seen that (1) corn 

in the visible is differentiable from both varieties of wheat at all off-nadir angles of view under 

the conditions of 0630 hours, and (2) there is much overlap between the two varieties of wheat. 

The same types of comparisons can be made at the other times of day. Note that the corn field 

in the 1030 infrared frame was  in the shadow of a small cloud as mentioned ear l ier ;  therefore, 

the separation seen in figure 34a is not representative of the crops under identical illumination 

conditions; in the visible frame (fig. 34b), the corn field was completely out of the shadow, and, 

while the Reed-wheat field was  out of the main shadow, there appears to be a slight reduction 

of response caused by a haze layer which extended past the cloud's edge. In the infrared at  

1430 hours (fig. 35a) the corn has a considerably greater response than does the Breeders 

wheat. In the visible (fig. 35b) Reed wheat is more responsive than the others, and the Pfister 

corn has a lower response than does the Breeders wheat; the two wheats are quite similar for 

larger angles and also overlap with the corn. 

* 
Note that the density readings were not corrected for the angle dependence of the camera; 

therefore, the falloff with large angles is probably caused by the camera rather than the crop. 
Furthermore, the ordinate quantity is density rather than exposure; the actual exposure changes 
cannot be obtained from the 1964 data. 

graphs were made from two different planes which followed similar paths but at slightly differ- 
ent times. 67 
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FIGURE 33. COMPOSITE PLOTS OF DENSITY VS. OFF-NADIR VIEW ANGLE, 0630 HOURS. 
25 June 1964.UlTl: mister corn;@Z 5210 Breeders wheat;big: Reed wheat. 
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FIGURE 34. COMPOSITE PLOTS O F  DENSITY VS. OFF-NADIR VIEW ANGLE, 1030 HOURS. 
25 June 1964.rml : Pfister corn ;a :  5210 Breeders wheat;m: Reed wheat. 
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FIGURE 35. COMPOSITE PLOTS O F  DENSITY VS. OFF-NADIR VIEW ANGLE, 1430 HOURS. 
25 June 1964.UUV: Pfister corn;m 5210 Breeders wheat;W: Reed wheat. 
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The second type of composite graph helps to further define those geometries in which the 
crops become differentiable. It is a plot of density vs. azimuth angle in which the ranges of 

densities measured a t  all off-nadir angles from 2O to 30° or  in the intervals 2O to 15' and 20' 

to 30' a r e  indicated on the graph. When densities of two or  more crops are placed on the same 

graph, one can determine those azimuth angles (if any) at which they are differentiable. Again, 

one can compare densities only on photographs that were obtained on the same flight, and, even 

then, care  must be exercised. Several composite graphs of this second type are presented in 

figures 36 through 39; the crops included are tabulated in table VLI, as are the fractions of cloud 

cover at the time of each flight. The direction of the sun is shown on each figure; the number in 

the sun is its angle as measured from the zenith; the fraction of cloud cover is also noted. It 

was not possible to obtain a full representation of crop types for each time of day and time of 

year because of the limitations in the photographic coverage. 

The first graph (fig. 36a) shows infrared density values for  0630 hours on 25 June. From 

it one concludes that it is difficult to differentiate the corn from the wheat in the infrared under 

these conditions. At 0630 hours on 25 June in the visible (fig. 36b) it is noticed that corn was 
much less responsive than wheat and that the wheat types overlap considerably. Although the 
data are incomplete, there is a strong tendency toward backscattering in the wheat. Figure 36c 

is an attempt to provide an additional breakdown of the densities read at  various off -nadir view 

angles. That is, each crop has two pairs of bounding curves, one for off-nadir angles of 2O to 

15' and one for angles of 20' to 30'. Although the curves are rather difficult to read, the 
Breeders-wheat field here appears to be differentiable (slightly higher response) from the Reed- 

wheat field at viewing azimuths from 90° to 200° when the two ranges of off-nadir angles are 

compared separately. 

At 1000 hours on25 June in the infrared (fig. 37a) densities were read only for corn and 

Breeders wheat. As mentioned earlier, the corn field was in the shadow of a small cloud and 

thus has low density values. In the visible (fig. 37b) there is much overlap between corn and 

wheat, but oats are clearly more responsive. The Reed wheat in this instance appears to be 

slightly more responsive (angle for angle) than the Breeders wheat, even though it might have 

been illuminated less because of a haze layer as discussed earlier. Thus, one detects here a 

smaller change and apparent reversal  in the relative responses of the two wheat fields in the 

visible in going from 0630 to 1000 hours. 

At 1430 hours on 25 June in the infrared (fig. 38a), theone wheat field has a much lower 

response than did either corn or  oats. The data on oats are less complete than on corn, but 

those available indicate that oats more often than not had a response greater than that of corn. 

In the visible (fig. 38b), Reed wheat is generally more responsive than either Breeders wheat 

or  corn for azimuth angles from 90° to 270°. The corn is distinguishable from the wheat for the 

same angles but overlaps at other angles. 
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FIGURE 36. COMPOSITE PLOTS O F  DENSITY VS. AZIMUTH ANGLE, 0630 HOURS. 25 June 
1964.lUE1 : Pfister corn;m: 5210 Breeders wheat;hZ9: Reed wheat. Nearly all values for  corn 

lie between D = 0.2 and D = 0.3. 
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FIGURE 38. COMPOSITE PLOTS OF DENSITY VS. AZIMUTH ANGLE, 1430 HOURS. 25 June 
1964. 0 : Pfister corn; x: 5210 Breeders wheat; 9: Reed wheat; A: oats. Off-nadir angles 
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FIGURE 39. COMPOSITE PLOTS OF DENSITY VS. AZIMUTH ANGLE, INFRARED FILM. 
27 August 1964. 
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TABLE VII. DESCRIPTION OF DATA PRESENTED IN COMPOSITE GRAPHS 
OF DENSITY VS. AZIMUTH ANGLE 

Figure 
No. 
35 

36 

37 

38 

39 

40 

41 

Date Time 

6/2 5/64 0630 

1030 

1430 

7 /2 9 /64 1315 

8/27/64 0825 

1055 

1400 

- - 
Fraction of 
Cloud Cover 

0 

0.2 

0 

0.2 

0.4 

1 .o 
0.8 

Crops Included* 

Wheat Oats Corn Soybeans - - -  
v, IR v, IR 
v, IR IR v, IR 
v, IR IR v, IR 

IR IR 
IR IR 
IR IR 
IR IR 

V denotes data from visible (panchromatic) film; IR denotes data from infrared film. * 
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On 27 August, comparisons can be made between corn and soybeans on photographic infra- 

red films at three times of day. At 0825 hours with 0.4 cloud cover (fig. 39a) the soybeans were 
with few exceptions more responsive than the corn. At 1055 hours with complete cloud cover 

(fig. 39b) the two crops were indistinguishable. At 1400 hours and with 0.8 cloud cover (fig. 39c), 

the soybeans were again more responsive. It is not known whether the changes in the relative 

responses of these crops can be attributed to temporal changes or angular dependences in the 

crops reflectances, to nonequal illuminations caused by the high fractions of cloud cover, or  to a 
combination of the two. 

The fields selected by no means exhibit all the differences and similarities that might be 

present in the real world. It is well  known that differences in crop maturity resulting from 

different planting dates affect the responses of a given crop (one example is discussed in 

sec. 6.3.2.2). Figures 33, 34, and 35 illustrate the differences which an exist between varieties 

of the same crop (wheat) which have the same planting date. The most important facts that can 

be extracted from figures 35 through 39 are as follows. (1) There is a marked variation in crop 

reflectances when the angles of observation and/or illumination are changed. (2) The maximum 

responses occur at angles away from the nadir. In the negatives, the peak responses were us- 

ually found at off-nadir angles of 20° to 30° (beyond which the camera limited the response) and 

at view azimuth angles away from the sun. The amount of variation in response at a fixed off- 

nadir angle as one sweeps through all azimuth angles also tends to become greater a s  the off - 
nadir angle is increased. (3) There appear to be certain geometrical situations in which two 

crops become more differentiable than at other situations. 

In the above study, only two relatively broad spectral bands were investigated, the photo- 

graphic visible and the photographic infrared. Since two aircraft were  used, the data in the two 

bands were not obtained simultaneously or  under precisely identical conditions; also, one cannot 

convert from density to exposure values. One cannot therefore make meaningful comparisons 

of the results obtained from the two bands. The 1966 scanner data, which will consist of si- 

multaneous imagery in twelve bands that cover the photographic region plus other nearly si- 

multaneous data in other bands, should permit a meaningful analysis to be made of angular effects 

and their spectral dependence. 

6.3.2.2. (U) High-Altitude Photographs. One ser ies  of high-altitude photographs was  made 

during 1964 (i.e., visible film at 1430 hours on (25 June) for which it is possible to make limited 

comparisons with some of the preceding low-altitude data. The comparisons a r e  limited because 

not enough individual frames were exposed at a variety of positions to permit the extraction of 

angle-dependent data for many of the angles of interest. The three crops studied are again Reed 

wheat, Breeders wheat, and Mister corn (see fig. 27). The wheat fields a r e  the same as were 
analyzed in the low-altitude studies, but the large corn field studied was not included in the 
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high-altitude photographs. Therefore, it was necessary to select other corn fields adjacent to 

the field of Breeders wheat. Two corn fields selected are of the same variety (Pfister SX29) 
as that of the low-altitude studies, but, while one (field A) had the same planting date, the other 

(field B) had a planting date 15 days later. 

The photographic coverage was such that densities could be read only for crops viewed from 

the southernquartersphere toward the northern one. The polar plots for off-nadir angles of 0' 

to 15O, 16' to 25O, and >25O are given in figures 40a, 40b, and 40c, respectively; the correspond- 

ing linear plots are presented in figures 41a, 41b, and 41c. At those angles for which direct 

comparisons are possible, one sees that (1) Reed wheat is generally slightly more responsive 

than Breeders wheat, (2) corn field A (comparable to the field studied at low altitude) has the 

lowest response of all, (3) corn field B, the less  mature corn (23-in. height a s  opposed to 38-in. 

for A), has a response which is somewhat greater than that of A and is comparable to and even 

slightly greater than that of Breeders wheat at certain angles, and (4) the crops again exhibit a 

tendency toward strong backreflection. Observations 1 and 2 agree very well  with those made 

from the density readings on low-altitude photographs (see fig. 35), even though the azimuth- 

angle coverage is incomplete in each case. Observation 3 results from the greater amount of 

soil which is observed in the less mature corn (the reflectance of soil is greater than that of 
young corn leaves in the visible region). Observation 4 also agrees with those made earlier 

for both high- and low-altitude photographs from the 1964 missions. 

A series of high-altitude infraredphotographs were taken a t  WRL during a local test flight 

on 2 1  July 1966 a t  1430 hours in order to investigate angle-dependent effects and check out the 

film calibration technique. On this particular flight, a ground point around which several  crops 

of interest were located was selected as the target point for the data runs. The plan was to fly 

directly over the target point on several  different headings while taking photographs with a large 

amount of overlap. Densities were to be read on each frame for a field of interest, with the 

density values then being used to produce curves for the field such as shown earlier from low- 

altitude photographs. The plan was followed except that the pilot found it difficult to fly directly 

over the target point on the various passes. Consequently, instead of having a single azimuthal 

direction for each reading on a given pass, each frame in the pass yielded a point with a different 

azimuth reading; the change was particularly noticeable for frames in which the target point was 

near the nadir. Another local flight has been planned in which there will be a different pattern 

flown with a higher frame rate  so a s  to obtain better coverage of the fields. 

Since the data collection is incomplete, it is not possible to construct curves as well defined 

as those shown earlier for the low-altitude photographs, but interesting observations are still 

made. Plots of the points obtained from the local flights are presented in figures 42a, 42b, and 

42c for  winter wheat and corn at off-nadir angles of Oo to 15O, 16O to 25O, and >25O, respectively; 
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FIGURE 40. POLAR PLOTS OF DENSITY FROM HIGH-ALTITUDE PHOTOGRAPHS. 
1430 hours, 25 June 1964. x : -5210 Breeders wheat;O: Reed wheat; D: Pfister corn 

(fie1dA);A: Pfister corn (field B). 
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FIGURE 42. LINEAR PLOTS OF RELATIVE EXPOSURE FROM LOCAL HIGH-ALTITUDE 
PHOTOGRAPHS, CORN AND WHEAT. 1430 hours, 21 July 1966. x : wheat; 0:  corn. 
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similar graphs for soybeans with two different row orientations are presented in figure 43. 

There are two differences between these high-altitude curves and the earlier low-altitude 

curves and the 1964 high-altitude curves. First, the ordinate has been corrected for the non- 

linear response of the film emulsion and is proportional to the actual exposure or crop radi- 

ance except for any falloff with off -nadir angles caused by the camera; this correction was  

possible because of the standard gray scale which has been added along the margins of the films 

produced in 1966. Second, the abscissa scale is shifted 180° from that used for the low-altitude 

plots. The abscissa was changed so that the data would be representative of the bidirectional 

reflectance patterns of the crops rather than being oriented toward the geometry of the mea- 

surement device as are the low-altitude graphs. The azimuth angle is here the direction in 

which the radiation is reflected rather than the direction in which the observer looks to see it. 
Consequently, the sun is shown at its true azimuth angle relative to the crop, and a back reflector 

is one which scatters most light back in the same direction as the sun. Also, the angle about 

the vertical axis is changed from off-nadir angle to zenith angle (which is measured relative to  

vertical). 

From figures 42 and 43, one sees that for the conditions of the measurement (1) winter wheat 

is less responsive than either corn or soybeans, (2) corn and soybeans overlap considerably, with 

soybeans having slightly greater responses on the average, and (3) all three crops exhibit a ten- 

dency to scatter more radiation both back toward the sun (azimuth -240') and in adirection sym- 
metrically located about the north-south axis than is scattered in intermediate directions. The 

linear graphs of figure 43 allows one to compare the vzlues obtained from east-west rows of 

soybeans with those from north-south rows. Because of the incompleteness of the data, it is 

difficult to see a meaningful difference. The only one is an apparent greater scatter of east- 

west rows at angles of - 135' (see fig. 43b). 

6.3.2.3. Theoretical Studies. A theoretical prediction of the spectral radiances of crops 

(which depend on the crops' bidirectional-reflectance properties) was desired for comparisons 

with actual field data. To build a model to permit such predictions requires the use of data 

measured both in the laboratory and the infield together with an appropriate geometrical model 

of (1) the crop's surface, (2) the observer's direction, and (3) the illumination's characteristics. 

Laboratory spectral reflectances and a trapezoidal crop model were used to develop a first- 

order predictive model; the model can presently be applied only to certain row crops such as 

corn and soybeans because of limitations in the available data; the calculations a re  made on a 

digital computer. 

Nearly all the applicable crop data are directional-reflectance measurements rather than 

bidirectional ones. That is, while a small source is used to illuminate the sample, the reflected 

82 



w 
E! 
M 
0 
pc x w 
w 
E 

w 
9; 

z 
2 

w 

!i pc 

xw 

2 
w 
E 

w 
E 

z 

w 
9 
2 xw 
i2 
s 

M 

E 

w 
9; 

0.7 

0.6 

0.5 

0.4 

0.3 
180° 225O 270° 315O 00 45O 90° 135O 180' 

North 
APPROXIMATE AZIMUTH DIRECTION O F  REFLECTED 

RADIATION 
(a) Off-Nadir Angles 0' to 15' 

180' 225' 270° 315' 00 45O 90° 135O 180° 
North 

APPROXIMATE AZIMUTH DIRECTION OF REFLECTED 
RADIATION 

(b) Off-Nadir Angles 16O to 25' 

0.7 

0.6 

0.5 

0.4 

0.3 
180° 225' 270' 315' Oo 45O 90° 135O 180' 

North 
APPROXIMATE AZIMUTH DIRECTION O F  REFLECTED 

RADIATION 
(c) Off-Nadir Angles >25O 

PHOTOGRAPHS, SOYBEANS. 1430 hours, 21 July 1966. 0 : soybeans, north-south rows; 
A : soybeans, east-west rows. 

83 

FIGURE 43. LINEAR PLOTS OF RELATIVE EXPOSURE FROM LOCAL HIGH-ALTITUDE 



radiation is collected (integrated) over an entire hemisphere. The only way that such data can 

be used in a model is to assume that the crop's surfaces are  diffuse reflectors. While such an 

assumption may be appropriate in some instances, there are definitely situations in which spec- 

ular characteristics have been observed. Most of the applicable spectral-reflectance data were 

measured by W d u e  in 1964 and are primarily limited to  the row crops, corn and soybeans; 

therefore, the first model was designed for these row crops. 

The many corn and soybean data curves were sorted into several categories and the mean 

values were calculated with Target-Signatures Library* programs at WRL for each category 

for use in the model; two additional curves a t  r t l  standard deviation unit are also plotted with 

each mean-value spectral-reflectance curve as an indication of the variation in the data. The 

corn data were placed in four categories: (a) green leaves from the top of a plant, (b) green 

leaves from the center o r  base of a plant, (c) dry brown leaves, and (d) dry tassle. The four 

curves for corn a re  presented in figure 44. Curve a is assumed to apply for young plants. 

There was a larger variety of colors for soybean leaves than there was for corn; therefore, 

the following s ix  categorizations were made: (a) light green, (b) medium-light green, (c) dark 

green, (d) medium-dark green, (e) greenish yellow, and (f) yellow (see fig. 45). A curve for 

immature soybean pods (fig. 45g) was also plotted. For modeling, it is to be assumed that young 

soybean plants a r e  dark green and that they progressively lighten and turn yellow as the plant 

matures. 

The only spectral-reflectance data on wheat and oats in the Target-Signatures Library a re  

bidirectional data obtained at  Beltsville, Maryland, by personnel of the Department of Agriculture 

and the Army Engineer Research and Development Laboratory [19]. An artificial source was 

used to illuminate growing specimens of the crops at a fixed elevation angle (-75') and the re- 

flected radiation was collected directly overhead. These data do not, therefore, contain enough 

variables to permit one to predict the angle-dependent properties of wheat and oat reflectances 

or to adapt the row-crop model to these crops. 

In order to keep the first model as simple as possible, a trapezoidal shape was assumed 

for the cross  section of a row (see fig. 46). The sides are assumed to be opaque so that from 

a rather simple geometry (extended to three dimensions) one can determine those portions of 

each surface that are both illuminated and observed. The model allows each surface to be com- 

posed of up to five subsurfaces, each of which in turn may have its own spectral-reflectance 

values. To make the model more representative of the angular orientations of the plant leaves, 
each subsurface is also allowed to have an effective tilt or  effective rotation about an axis 

*The Library is part of the Target Signature Analysis Center established at The University 
of Michigan and sponsored by the Air Force Avionics Laboratory. 
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FIGURE 45. SPECTRAL-REFLECTANCE CURVES FOR SOYBEANS (Continued) 
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FIGURE 46. SIMPLE MODEL FOR ROW GEOMETRY 
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parallel to the row direction; the tilt rotates the reflection pattern of each surface and conse- 

quently changes the overall pattern from that of a nontilted model. 

A s  discussed in section 6.3.1, the initial computer program included only the sun as the 

illumination source. This limitation was prompted by three facts: (1) the sun, when present, 

is the dominant source of short-wavelength radiation, (2) only limited data are available on 

the spectral-reflectance properties of clouds, and (3) the inclusion of clouds would greatly in- 

crease the complexity of the calculations. For all subsurfaces which are both illuminated and 

observed, the normal to the subsurface and the directional vectors of the source and illuminator 

are used to compute the spectral radiance of the subsurface in the direction of the observer; a 
summation over all subsurfaces gives the value for the crop. 

If the crop were an ideal flat diffuse reflector, there would be no change in the amount of 

radiation observed by a fixed-FOV scanner as it is scanned across or around it; in other words, 

its radiance would be invariant with the angle of observation. Furthermore, the radiance retains 

none of the directional properties of the illumination. Thus, it can be seen that any angle-depen- 

dent properties of crops that are diffuse reflectors must result from their orientations relative 

to the observer and the illuminator. 

Figure 47 illustrates the differences between computations based on a tilted crop model 

and those on a nontilted model. The crop characteristics were assumed to be typical of corn 

at Purdue during the last part of July and the time of day is about 1400 hours (solar zenith an- 

gle = 20' and azimuth angle = 200'). The calculated radiance distributions have symmetry 

about the normal to the crop row direction because of the nature of the crop model; consequently, 

the sun's azimuth has less effect than it might if tilts were also allowed in a direction perpen- 

dicular to the crop rows. 

Calculations were made with the tilted crop model for the conditions which prevailed dur- 

ing the 1966 high-altitude test flights in Michigan; the results were normalized and are super- 

imposed in figure 48 on the experimental data obtained for corn ($ 2 16') from the high-altitude 

films. The curves for $ = 20° and $ = 30° fit the data quite well except for angles at which the 

shady side of the rows are  observed (i.e., 270° < 8 < 90'). Since the crop model is assumed 

to be opaque, the only surface which is both illuminated and observed from the angles mentioned 

is in the top, and tilting the top surface reduced the effective area even more; in reality, one 

would expect some illumination on the back side of the rows and thus a less severe dip in the 

radiance of the crop. 

In searching for andusing reflectance data for the crop models, we found certain deficiencies 

which decrease the usefulness of the data and thus restrict their value for general use in a li- 

brary such a s  the Target-Signatures Library at WRL. It is therefore recommended that any 

future measurements be documented with the following information: 
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(A) Vegetation measurements 

Species and variety 

Age of plant (planting date and the date of measurement) 

Stage of development: seedling, flowering, etc. 
The position on the plant from which the sample to be measured is taken (height 

from ground surface or number of leaves as counted from the base of the plant) 

Color of sample 

It is suggested that a color standard be used such as the Munsell Color Chart for 

Vegetation. 

Any other information about a plant that might be useful, such as: 

(a) Conditions under which the plant was grown, i.e., plant was grown under dry 

conditions or  plant was grown in a highly fertile soil, etc. 

(b) Condition of plant, i.e., healthy, diseased, etc. 

(c) Type of soil in which the plant was  grown 
A complete description of the method, procedures, and instruments used to make 

the measurements, including any changes made in the sample, intentionally, or 

unintentionally 

(B) Soil measurements 

Geographical location from which sample was taken (county, township, section, 

1/4 section) 

Color of soil as compared to a standard such as the Munsell Soil Color Chart 

Measurement of soil moisture content and description of method used in measur- 

ing it 
Description of the soil, including its type, texture, composition, etc. 

Description of the method used to collect the sample, including: 

(a) The level at which the sample was taken 

(b) The extent to which the soil has been changed from its natural state (soil 

moisture, surface geometry, etc.) 

A complete description of the method, procedures, and instruments used to make 

the measurements, including any changes made in the sample, intentionally, or 
unintentionally 

6.4. ALTITUDE - VARIATION STUDIES 

6.4.1. DEGRADATION OF MULTISPECTRAL IMAGERY. Multispectral imagery will be 

degraded in two distinct ways as the altitude at which the image is made is increased. First, 

the ground resolution will be degraded primarily by simple geometrical effects. Second, the 
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apparent spectral radiance of any part of the scene may be changed by spectrally selective or 

nonselective absorption, scattering, and emission effects occurring in the atmospheric path. 

In either photographic o r  optical- mechanical scanner imagery, the spatial resolution set 
by the instrument generally has the form of constant angular resolution so  that the linear reso- 

lution at the ground will be directly proportional to the altitude. This result can, of course, be 

altered by changing the focal length of the objective lens and making the appropriate changes 

to the equipment. This again, however, involves a simple geometrical relation and can readily 

be accounted for. What is more important here is to notice that there axe other effects which 

may degrade resolution, but they are likely to become less important as altitude is increased 

or a re  likely to produce a constant degradation of the angular resolution (except perhaps under 

special circumstances.) 

Thus, for instance, image degradation of the ground resolution due to scintillation caused 

by atmospheric turbulence (for a given atmospheric condition) will become less  and less notice- 

able as the altitude is increased, while the geometrical ground resolution will fall off with alti- 

tude. In any case, turbulence effects a r e  likely to be relatively insignificant except for oblique 

photography with very long focal length lenses with which we are not concerned in our aircraft  

measurements or satellite applications. If turbulence around the aircraft  leads to significant 

scintillation, this would no longer be true, but such effects a re  believed to occur only in certain 

regimes of high-speed flight with which we need not be concerned at this time. 

Again, vehicle vibration and instability may lead to image degradation resulting from mo- 

tion of components of the imaging equipment during exposure. Usually such vehicular effects 

are reduced in magnitude as altitude is increased, so performance degradation with increasing 

altitude for this effect is unlikely. Particular vehicle operating conditions which lead to ex- 

cessive vibration or instability should be avoided. 

It is often supposed that haze can lead to spatial resolution degradation. However, it has 

been shown by Middleton [20] and others that this is not the case except perhaps under very 

special circumstances such as exist when a very thin layer of dense fog is almost in contact 

with the target. As shown by Middleton, the more general and more important effect of haze 

is to destroy the contrast in the image by the double action of scattering light out of the beam 

from the image and uniformly scattering light from any other source present into the beam. 

6.4.2. SCATTERING AND ABSORPTION. For simplicity, we consider first a single nar- 

r o w  band of wavelengths and two uniform objects of spectral radiance N I h  and NZX. From 

some given altitude, both spectral radiances will appear to be attenuated equally by absorption 

and scattering by the factor hrh, the transmission of the column of atmosphere of height h. 

This factor will be a function of the atmospheric conditions as well as of h and h. At the same 
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time, the apparent radiances of both objects will appear to be increased by an amount hANA ) 

the radiance of the column of air of height h due to emission from and/or scattering by the 

gaseous and particulate matter in the column. Thus the apparent spectral radiances of the 

two objects have changed from Nlh and N2X to 

hNlh = h ~ h N l h  + hANX and hN2h = h ~ h N 2  + hANh (1) 

In visibility and photographic work [21], it is usual to define contrast C by a ratio such as 

N1 - N2 

N1 + N2 
c =-- 

Thus, if C is the actual target contrast and C is the apparent contrast as observed from 

altitude h, for wavelength h we find 
o h  n h  

N l h  - N2h 
och = Nlh + NZh 

and 

C o h  
1 + (hAN/h~,)/fl, 

_ -  
7 (N 

hch = h ~ h ( N I X  + NzA) + 2hANh 
h h l h -  N2A! - 

where 

portant in photographic contrast determination. For our purposes, however, introduction of 

an arbitrary definition of contrast does not appear to be of value. 

is the mean radiance of the two targets. Thus, the factor h A N h / h ~ h  is clearly im- h 

In this case, the path radiance hANh can be ignored and a knowledge of T as a function of 

h, h, and atmospheric conditions is all that is required to understand and predict the variation 

of spectral radiance differences with altitude. For radiation-noise-limited detectors, however) 

the detector noise level and responsivity will depend upon the total radiance, which must, there- 

fore, be taken into account. Also, the term AN will not in fact be constant as has been as- 

sumed above. The radiation scattered into the beams is predominately sunlight for wavelengths 

shorter than about 4 p. At longer wavelengths, this radiance hANh is primarily the self-emis- 

sion of the path with perhaps some thermal radiation from the earth and sky scattered into the 

beam. In all cases, hANX and T will depend upon the angle of inclination of the beam. In gen- 

eral, they will both become larger as the angle between the beam and the vertical increases. 

h h  

A 

Unless it is possible to work entirely at wavelengths at which atmospheric absorption and 

scattering effects a re  negligible, it will be necessary to correct multispectral imagery data 

using appropriate measured or theoretical values of r and ANh. 
h h  h 
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It is interesting to notice that if a complete automatic system for data analysis and data 

processing of the type indicated in section 5 were available, consideration of such concepts as 
7 and AN would be unnecessary. The whole problem could be handled by including h and h h  h h 

the view angle together with appropriate measures of the atmospheric conditions as compo- 

nents of the vector used to represent the measured spectra. This would be equivalent to using 

a separate library of target spectra for each condition of measurement (Le., for every com- 

bination of h, view angle, and atmospheric condition). While this technique would probably be 

less efficient than a data-correction system, it might well be more practical. Automatic pro- 

cessing of this sor t  is unlikely to be available for some years; however, these considerations do 

make cleartwoproblems of ageneralnature. The first is the rather obvious one of the very large 

amount of data that would have to be gathered to form a statistically valid basis for a definitive 

determination. The second is the difficulty of finding measures of atmospheric conditions 

which are both useful in this context and either measurable or predictable. For instance, while 

the total water-vapor content of the path would probably be useful in determining h ~ h  in the 

wings of the water-vapor absorption bands, there is no way of obtaining a direct measure of 

this parameter under normal operating conditions. In fact, in this case, the measured spectra 

would probably contain the best available information on the water-vapor content. An ideal 

processing system would automatically take this information into account and neither extra 

vector components nor corrections to allow for water vapor would be required. 

It is clear, however, that a study of 7 and AN and an attempt to correlate these with h h  h h 
measurable or  predictable atmospheric parameters is desirable. In principle, a theoretical 

approach to the problem is possible, but the extreme complexity of molecular absorption and 

emission spectra and the equally great complexity of scattering theory make a purely theoreti- 

cal approach impracticable. 

A definitive experimental approach would be a major undertaking, s o  preliminary explor- 

atory experiments designed to provide an understanding of the overall situations are indicated. 

If one measures the apparent radiance of two targets of different intrinsic radiance at one 

wavelength and from ground level and altitude h but otherwise under identical conditions, one 

will obtain corresponding measured values of Nlh, NZh, hNIh, and hN2h. Then by inserting 

these values into equation 1 and solving the two simultaneous equations so formed, one obtains 

values for r and ANh. While such experiments should undoubtedly be undertaken, the two 

difficulties mentioned above (the large number of measurements required and the difficulty of 

describing atmospheric conditions) are compounded by the difficulties of calibrating the mea- 

surement equipment. For instance, in the measurements just discussed, it would be necessary 

to make simultaneous measurements on the two targets from both ground level and the chosen 

h h  h 
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altitudes and to use spectroradiometers whose relative calibration was known to a high degree 

of accuracy and whose spectral bandwidths were essentially equal. 

At the present time, all image interpretation, whether monotone or multiwavelength, is 

carried out by human interpreters. In view of this and of the magnitude of the sort  of definitive 

experimental approach discussed above, it seems best to carry out preliminary survey experi- 

ments based in part on the skill of trained interpreters. A typical experiment would involve 

the collection of multispectral imagery of regions chosen for their intrinsic agricultural or 
other interest. Imagery would be made from as wide a range of altitudes as possible under as 
identical conditions as possible. (The latter condition might be approximated by having a sin- 

gle aircraft descending from the highest through the lowest altitude to keep the time between 

runs as low a s  possible and by doing this under stable weather conditions.) The lowest-altitude 

imagery would then be shown to an experienced interpreter who would be asked to note any in- 

teresting deductions he could make from the imagery. He would then select areas  of specific 

interest. Data for the same areas taken from other altitudes would also be assembled. These 

data would then be analyzed in an attempt to answer the following questions: 

In what ways and how much do the measured spectra of ground targets of interest 

change with altitude ? 

To what extent and in what way do these effects depend upon weather or other param- 

eters  ? 

Do such changes seriously degrade the effectiveness of specific data-processing 

schemes ? 

If such degradation does occur, can the original data be corrected for altitude and 

other measurable or known atmospheric conditions and can such degradation be made 

inconsequential by such techniques ? 

It will be seen that questions 3 and 4 cannot be properly answered except by reference to 

specific processing schemes. It should also be realized that the relevance of the answers to 

the first two questions also depends upon the specific processing scheme to be used, as this 

will determine the magnitude of spectral change which can be tolerated. In fact, no complete 

answers could be found for these questions until the nature of processing schemes to be used 

has been determined more explicitly than has been done so far. On the other hand, the value 

of a processing scheme will depend in turn upon the way in which altitude and other effects a r e  

handled, Thus, in fact, answers to these questions must be found concurrently with the develop- 

ment of processing schemes. 

The specific data analysis experiments to be performed will no doubt be developed along 

with the data-processing and recognition schemes. However, there is no difficulty in inventing 
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experiments for analyzing the data gathered by the method discussed above; three experiments 

which appear particularly appropriate at the present time are described below. 

(1) Higher altitude imagery should be compared with the corresponding low-level imagery 

by skilled interpreters. Such an experiment will not produce numerical results, but the inter- 

preters may or may not find targets which they can identify on the basis of color effects in the 

low-altitude imagery but not in the corresponding higher altitude imagery. Perhaps the most 

important result of these experiments will be to find limited classes of targets and ranges of 

wavelengths and other parameters of importance. In this way, the data available for the other 

two experiments can be reduced to manageable proportions without greatly reducing their value. 

(2) From such a reduced data bank calibrated values of spectral radiance for given tar- 
gets and selected wavelengths should be plotted against altitude. The plotted points for each 

flight can then be joined or represented by smoothed curves as seems best. The result of this 

exercise will be a ser ies  of diagrams like that shown in figure 49. If these diagrams show 

serious divergence of behavior between flights, then an attempt should be made to determine 

whether particular types of behavior can be correlated with known or measurable atmospheric 

parameters. If it is desirable and possible to correct raw data for altitude effects, then these 

diagrams will contain the basic information needed to make such corrections. 

(3) On the other hand, these experiments will not by themselves indicate whether or  not 

data correction to allow for altitude effects is necessary. Ultimately this will be decided in 

the development of optimum spectral target-recognition processing techniques. In other words, 

while altitude effects will undoubtedly increase the variances of the spectra of various targets, 

the extent to which these increases will affect detection probabilities and false-alarm rates can 

be completely determined only when a statistically valid data bank of spectral signatures is 

available and optimum discrimination techniques have been developed. 

In the mean time, however, it should be possible to obtain valuable indications of the mag- 

nitude of the problem by limited analysis. The technique of plotting two elements of the spec- 

tral signatures of a scene in an x-y oscilloscope display has already produced some interesting 

results. Such a plot, made using low-altitude data, could be overlaid by the corresponding plot 

for high-altitude data. It would then be possible to determine by inspection to what extent the 

increased variances of the combined data prevent discriminations possible with the low- altitude 

data. 

Much useful information should emerge from these experiments on such factors as: 

(1) How serious are altitude effects ? 

(2) At what, if any, wavelengths are such effects particularly serious or inconsequential? 

(3) What kinds of meteorological parameters correlate with such effects? 
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FIGURE 49. PROBABLE RADIANCE VARIATION AS A FUNCTION OF ALTITUDE 

Thus, not only would the general characteristics of altitude effects be established in a way 

that would be of immediate value to both the planners of data-gathering flights and to the inter- 

preters of data, but the results should be considered in planning more definitive altitude-effect 

measurement programs in the future. Perhaps most important, it will permit researchers to 

allow for such effects in the design and development of spectral recognition processing equip- 

ment. 

From the summary of the data acquisitions for 1966 (table I, sec. 21, one can note the 

amount of data collected at various altitudes. These data have been tape recorded and will be 

used in the analysis for altitude effects on spectral signatures of crops. The most efficient 

way to conduct the analysis is to employ a cyclic display technique to  obtain data from preferred 

small sections of the total video generated at each altitude and thereby work directly with dig- 

itized electronic signals. The analysis of the data will be delayed until this cyclic display capa- 

bility has been implemented. 
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Appendix I 
REFLECTANCE DERIVATION FROM SCANNER OUTPUTS 

This appendix presents the relationship between the output voltage of an airborne radiation 

sensor and the reflectance of the earth. The system generates an output voltage for each sam- 

ple on the earth that it sees;  the voltage ratio for two samples is expressed as a function of the 

reflectance ratio of the two samples in the discussion that follows. An expression is derived 

first that relates the voltage ratio to the reflectance ratio for the general case; two special 

cases are then specified for which the voltage ratio equals the reflectance ratio. 

The following assumptions are made. The incident and the reflected radiation a re  con- 

sidered to be unpolarized. The attenuation of the atmosphere is neglected in this analysis. 

The ground resolution element contains a single substance that fills the field of view of the sys- 

tem. The reflectivity is constant across  the narrow wavelength bands considered. The collect- 

ing optics of the scanning system subtend a small  solid angle so that the radiation quantities 

and the cosine function do not change appreciably over the solid angle. Several definitions and 

equations are obtained from reference 1. 

The following five conclusions are drawn: 

(1) In the general case for which the sky contributes a significant amount to the total inci- 

dent radiation and the samples observed are not Lambertian reflectors, the voltage ratio only 

approximately equals the reflectance ratio. The true relationship between the voltage ratio 

and the reflectance is given by equation 9 below. 

(2) If the radiation from the sky can be neglected, the voltage ratio and reflectance ratio 
(between two samples on the earth) are equal for every kind of reflector. 

(3) If the samples on the earth are Lambertian reflectors, the voltage ratio and the reflec- 

tance ratio are equal. The presence of sky radiation does not negate this conclusion. 

(4) The percentage of the total incident radiation that is due to sky radiation decreases 
for increasing wavelengths and for decreasing polar angles of the sun. At approximately 1.0 p 

the sky's contribution is negligible for all polar angles. At 0.5 p the sky's contribution decreases 

to approximately 10% as the sun's polar angle decreases to zero (sun at zenith). On cloudy 

days, the sky's contribution is greater than that for a clear day. 

(5) One cannot correctly say that all naturally occurring materials on earth are Lambertian 

reflectors. 
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The preceding conclusions, in summary, indicate that the voltage ratio only approximately 

equals the reflectance ratio. In certain special cases (conclusions 2 and 3) the two ratios are 

equal; however, these special cases do not always apply. The following sections verify these 

conclusions. 

We first relate the system output voltage to the reflectance of the earth. The power P (in 

watts) at the collecting optics of the radiation sensor is 

P = N , A , A ~ R - ~  cos e (3) 

where N = N ( B  

0 = polar angle between the normal to the ground resolution element and the scanner 

) = radiance (W-cm-2-sr-1) of the ground resolution element r r r r  
r 

(the polar angle is the complement of the elevation angle) 

Cp, = azimuth angle of the ground resolution element 

A = area (cm ) of the collecting optics 

A = area (cm ) of the ground resolution element 

2 

2 0 

G 
R = range (cm) from the ground resolution element to the scanner 

2 2  2 
We next use the approximate relationship, A = u R sec Br)  (a = the field of view of the G 

radiation sensor in steradians) in equation 3 to obtain 

(4) 
2 P = NrAoo 

Since the system output voltage V is directly proportional to P, we obtain 

The subscripts 1 and 2 denote the two ground resolution elements (the two samples) observed. 

The radiance Nr is a function of the angles Br and $r and is [22] 

Nr =/p'Ni cos BidS1. 1 (6) 

where p' = p'(0.$ 6 9 ) = bidirectional reflectance (sr-l) per unit projected solid angle of the i i '  r r  
received radiation 

6. = polar angle between the normal to the surface and the incident radiation 

9. = azimuth angle of the source radiation 

N. = N.(B.+.) = radiance (W.cm-2-sr-1) of the source radiation 

1 

1 

1 1 1 1  

1 1 1 1  
d 9  = sin 6. de. d+. = elemental solid angle (sr) of the source 

The bidirectional reflectance per steradian, p ' ,  is related to the bidirectional reflectance 

P = P(q+p  Qr+J by 
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where d52, = the elemental solid angle subtended by the receiver. 

The sun and the sky are the two sources of the incident radiation to be considered. The 
- 2  

sky has a radiance Ni and equation 6 can be applied. The sun has an irradiance H (W-cm ) 
related to Ni by dH = Nidai so that 

N = p' COS 8.dH r J 1 

Since p' and Bi do not vary appreciably over the solid angle subtended by the sun, we can say 

that 

N~ = p ' ~  COS e i 

In the preceding equation, 8. and $I. are evaluated at the position of the sun, Os$,, so  that 
1 1 

N = P'H COS e r s  s 

The total radiance at the collecting optics of the radiation sensor is obtained by adding the sky 

and sun contributions from equations 6 and 7 to obtain 

Nr = pLH COS Os + 1 1  ( 8) 

Using equation 8 in equation 5 yields 

V1 pLIH cos + S i  p N i cos BidO. 1 _- - 
'2 pL2H cos Os + 

(9) 

Equation 9 shows the relationship between the voltage ratio and the reflectance for the general 

case. We next look for  simplifying assumptions to apply to equation 9 to make the voltage ratio 

equal the reflectance ratio. 

The first simplifying assumption is to neglect the sky radiation and consider the sun as the 

only source. Equation 9 then reduces to 
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In this case the voltage ratio equals the ratio of the bidirectional reflectance per steradian be- 

tween the two ground resolution elements. However, the limited available data show that the 

sky can contribute a significant amount to the total incident radiation. Measurements and cal- 

culations made for a clear blue sky were found in references 17 and 23-26. Figure 50 [17] 

shows the radiation from the sun + sky and from the sun alone as a function of wavelength for 

polar solar angles of Oo, 48O, SO0, and 75'. The contribution of the sky was calculated in ref- 

erence 23. Figure 50 shows that for a polar angle of 75O (elevation angle = 15O), the contribution 

of the sky to the total radiation is 50% at 0.5 p and 26% at 0.8 p. When the polar angle de- 

creases  to Oo (sun at the zenith), the sky's contribution to the total decreases to 10% at 0.5 p 

and 3% at 0.8 p .  Percentages fo r  other sun angles and wavelengths can be obtained from fig- 

ure  50. Other measurements [23-261 recorded for polar angles of 20' indicate a somewhat 

larger percentage for the sky's contribution. These data indicate that the sky contributes 

15% at 0.5 p and 13% at 0.8 p .  

From the preceding data we conclude that: 

(1) The sky's contribution to the total incident radiation i s  particularly significant at short 

wavelengths (near 0.5 p) and large polar angles (near 75'). 

(2) The sky's contribution decreases for increasing wavelengths and for decreasing polar 

angles. At wavelengths near 1.0 p the sky's contribution is approximately 0 for all polar angles; 

at 0' polar angle and 0.5 p the sky's contribution decreases to approximately 10% of the total. 

(3) Data showing the sky's contribution were recorded for a clear blue sky. When the sky 

is overcast or cloudy, the percent radiation from the sky will be greater than for a clear blue 

sky. 

Since the sky radiation is often significant, we will retain it and place restrictions on the 

reflectance that allow us  to equate voltage and reflectance ratios. Examination of equation 9 

shows that if p' is constant with respect to 0.4. we can take it out of the integral. Also, by the 

reciprocity theorem [22], we have p'(Oi9i, 

respect to 

1 1  

= P ' ( Q , + ~ ,  Oi$.J, so that p' is also constant with 

thus, p' is a constant. Equation 9 then becornes 

v1 P;(H COS es + N~ COS ei ds2.J 
v2 - ~H(H COS es + N~ COS eids2J 
- _  

'1 Pi 5=p; 
Assuming that p' is constant is equivalent to assuming the material is a Lambertian re- 

flector. It is useful to categorize all materials as either specular or  diffuse reflectors. A 

101 



h 

=L 
v 

z 
E 

- 0  z w 
4 
Er7 
3 c 
3 

0 
v) 

102 



specular reflector is one for which the angle of reflection equals the angle of incidence. A dif- 

fuse reflector is any reflector that is not specular. A Lambertian reflector is a diffuse reflec- 

tor with a constant bidirectional reflectance per steradian, p' .  

The measurements reported in reference 27 show that at least some naturally occurring 

materials are not Lambertian reflectors. They show that the reflectance of wheat, grass ,  and 

beets in sandy soil changes considerably with the angle of the radiation source. From these 

limited data we cannot say that most naturally occurring materials are non-Lambertian; we 

have demonstrated only that some a r e  definitely not Lambertian. 
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Appendix 11 
DATA HANDLING EQUIPMENT 

The objective of the data-handling equipment is to furnish data from the scanners in a 
form acceptable to IBM 700/7000 series computers such as are available at The University of 

Michigan and at Purdue University. It is intended that this be done by using available equip- 

ment as much as possible to lower the cost of this operation. For this purpose, a means of 

making the scanner data acceptable to the A-D equipment already at The University of Michigan 

is required and is the principal subject of the design. 

11.1. A-D CONVERTER 

The general characteristics of the available converter are described briefly. The equip- 

ment accepts a serial or  parallel input and sequentially samples, holds, and converts the signal 

into digital form and records this on tape in 7-bit form at a density and rate (556 bits/in.,75 ips) 

acceptable to IBM equipment. However, the equipment cannot sample and hold an input signal 

from the 12 channels for a single resolution element as is needed for our data; consequently, 

a parallel sample-and-hold operation must be performed prior to using this equipment. Fur- 

thermore, since we are using two recorders which contain 12- and 4-channel data on l-in. 

and 1/2-in. tape, respectively, and only 1/2-in. tape is needed, the data on the 1-in. tape should 

be converted to the 1/2-in. tape machine, i.e., it must be serialized. This sampling, holding, 

and serial multiplexing of the data must be performed by equipment not available at this time. 

11.2. CHARACTERISTICS OF THE SAMPLED DATA 

The data to be sampled are conventional scanner data obtained from either a 12-channel 

source, a 4-channel source, or two single-channel sources. Thus, the information required 

will be sampled 12, 4, or  1 at a time, serially entered on a tape channel (FM) along with identi- 

fication information and synchronization pulses in other channels. In this form, the data can be 

accepted by the A-D conversion system. 

To obtain an idea of the data which may be processed by this technique, it is useful to con- 

sider the form of the processing. The quantities of interest are the sampling rate and sampling 

density. The sampling rate is determined by the A-D converter and the number of channels. 

For example, 

1 3 1  3 
n 12 r = s X - = 20 X 10 X - = 1.67 X 10 samples/sec 
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where n = number of channels 

s = frequency capability of the A-D converter 

Once the tape has been slowed down, however, the effective sampling rate will run up to as high 

as 53 kHz. 

The sampling density, or the number of samples per radian of scanner motion, is a function 

of sampling rate, scanner angular velocity, and tape speed: 
0 

60 1 60 2 0 x  l o a x  60 x -. 
12  3000 x 2n t d = r X - X - samples/rad = w t  

50 ir 
3n 3n 2 

-- - 50 X n = 5.3 X n samples/rad = - x n x - = 8.3 X n samples/quadrant 

where r = samples/sec 

w = rad/sec 

t = tape playback speed, ips 

60 = normal recording speed, ips 

n = record/playback speed ratio 

The sampling densities readily obtainable may range from 8.3 to 266 per quadrant as tape 

speed is changed from 60 ips to 1 7/8 ips in playback. This may be expressed as 5.3 to 170 

samples/rad or  as one sample per 189 mrad or per 5.9 mrad. 

The ground sampling density is worth noting and is computed from the aircraft speed, 120 

knots. These densities range, then, between 208 and 6650 samples per 100 f t  of flight. The 

sampling density, however, will probably be chosen on the basis of obtaining sufficient angular 

sample resolution. 

The angular resolution is of interest also. If a ground swath 300 f t  wide is assumed at al- 

titudes of 500 f t ,  2000 f t ,  and 10,000 f t ,  the following sample densities are available per scan 

line along the length of the field: 

Altitude Low Density (60) High Density (1 7/8) 

500 f t  3.1 samples 99 samples 

2,000 f t  0.79 samples 25.5 samples 

10,000 f t  0.16 samples 5.1 samples 

The high density seems reasonable and should allow satisfactory operation. 

Of these data, which are probably typical, only l o % ,  2% and 0.5%, respectively, of the 

actual scan angle is required for storage. The digitizing process, however, samples all the 

data and provides a very inefficient set  of data which should be further processed. This will 
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require simple editing of the tape by a computer to obtain a masked, edited, repacked tape for 

direct use in programs without imposing the need for  an editing program on each user Of the 

data. 

11. 3. DESIGN OF THE SERIALIZER 

Following the process of serialization described, changing tape speeds and digitization 

allow a satisfactory range of sampling density. Since only the addition of a serialization pro- 

cess to the data recorded in the aircraft is required to make it acceptable to the A-D converter, 

the serializer can be considered necessary. Moreover, equipment similar to that needed is 

already designed and fabricated to handle the 12-channel calibrated information. 

The data-handling process can be visualized as in figure 51. On the basis of previous re- 

marks, it seems most efficient to retain data in only the original analog form or final edited 

form since only 2% to 10% of the intermediate tape is actually desired data. 

The general block diagram of the serializer is shown in figure 52. Data are sampled at a 
constant rate of 20 kHz and multiplexed into a single FM channel of a tape recorder. A sync 

pulse is supplied to control the A-D converter. A stop/start pulse is supplied to control the 

IBM 729 tape handler and to increment the recorder number; this may be a single bipolar level 

change or burst of positive or negative pulses. A code is supplied on four channels to allow 

continual identification of data. This is set up to allow "1 of 4" coding so that masking may be 

simplified to sorting on a single bit. The start of a scan may be determined from the first oc- 

currence of data and there is no coding for angular location; the angular location may be de- 

termined by counting the number of samples and determining angle from the known sampling 

rate and speed of rotation of the scanner. This will have to be known and supplied as additional 

data. 

A detailed sketch of the formats of the tape generated in the process is given in figure 53. 

The sequence of sampling is 13 counts long, one sample interval, and 12 serially multiplexed 

analog samples of the input channels. At each sample, the data are encoded with identification 

bits as shown with the S interval coded as (0000) since it is an interval of change and allows an 

insertion of a 0 - 1 transfer to locate the first element of the 1 2  vector. 

The digital tape will start on command and insert a record number at the beginning of the 

data, ignoring information on the analog tape. At the end of this operation, the record will com- 

mence with a randomly located sample point shown in figure 53 as point #lo. Thus, in general, 

a certain amount of data must be thrown away since the sample point is not known and the lo- 

cation within the scan angle is not known. The tape could be encoded for this, but the search 

operation required can be performed more easily in the computer. 
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Finally, the overall appearance of the data will be as shown in figure 54. Each record will 

have a sequentially coded record number followed by data derived from calibration points and 

ground radiation interspersed with I1junkT1 and starting at a random point within the field of 

interest and ending at another random point within the field of interest. The packing will be 

poor in te rms  of the percentage of data in the tape (2% to lo%),  but it may be collated and un- 

packed simply. It appears best to do this unpacking and collating with the computer before 

supplying the data to any user. This requires the preparation of a simple program to mask 

the data to eliminate junk and to unpack the 12-bit characters and repack them into 36-bit words, 

at the same time adding whatever additional information is needed either on the tape o r  on cards. 

The exact form for the final tape should be determined by the analysts to assure a satisfactory 

set  of data tapes. This final step should be made, however, to avoid buying and storing 10 to 50 

times the amount of tape really needed. 

II.4. RdSUMk OF PROCESSING 

In order to process the data as described above, a considerable amount of equipment is 

required (fig. 55). The new equipment needed, beyond the normal processing equipment, has 

been minimized as much as possible in order to build a serializer for which similar modules 

a re  already designed and built. 

The operations required may now be described in terms of figure 55. The tape is run a t  a 
normal rate to locate the areas  to be serialized and digitized as noted on the C-scan CRO. The 

location then is made from the tape footage indicator (and the CRO as a check). The specific 

area and the calibration points a re  then gated by location along the scan line to allow their en- 

coding. When all areas  a r e  properly located, the tape is then run at a suitable speed to obtain 

the desired sampling density and the record start  signal is given as determined by visual ob- 

servation. The serialization continues until the record stop is given. A gap of tape is then run 

into the #2 recorder to separate the records as needed and the process is repeated for the sec- 

ond field. 

At the same time the recording CRO is operated and a record of the area serialized is ob- 

tained for one channel. This may be expanded, of course, to afford a fuller picture than only 

the area serialized if this is desired. 

11.5. CONCLUSION 

The processing equipment described appears to be a simple method of obtaining digital 

records from the scanner data and should be compatible with the scanner data and the A-D 

equipment. It should also afford digital data acceptable by both WRL and Purdue computing 

equipment. 
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